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Outline

* Latest cosmological results from Union2
* Zero-point uncertainties are important !

* Kim & Miquel (2006, hereafter KM) introduce a better way to
treat them, used by Union2

* ldea: treat Zero-point uncertainties as nuisance parameters
* Introduce the method

* Example of future experiment: SNAP/JDEM/WFIRST

* Main take away message:

The method is general and can be used in
future experiments
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i A Quick Introduction to Dark Energy

* Usually parametrized by an equation of state parameter:
P=w(z)p
* In principle w is time dependent; a cosmological constant is
equal to -1 at all times
» W(z) often parametrized as w(z)=w +w z/(1+2)
* The data so far favor a Lambda Cold Dark Matter Model
(LCDM), (i.e a cosmological constant)

* But it is by no means firmly established that a
cosmological constant is the correct explanation for the
observed cosmic acceleration
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The (Union2) Compilation of the World SNe

* Compilation of 557 SNe uniformly analyzed

* Provides the best constraints to date on dark energy
—LCDM still a good fit to the data

w = —0.99710-050(Stat) T0-077 (Stat + Sys)(FlatUniverse)

w = —1.03810-025(Stat ) T0-095 (Stat + Sys)(WithCurvature)
—The data however do not constrain well dark energy at z>1
—Systematic errors are approaching the size of statistical errors
—/Zero-point uncertainties among the most important systematics
—KM used to reduce systematic uncertainty

* Results published in Amanullah et al 2010, Apd, 716, 712
* Check out the website at: http://supernova.lbl.gov/Union/
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The Union2 Hubble Diagram

Supernova Cosmology Project
46 Amanullah, et al., Ap.J. (2010)

551 SNe selected from
several surveys

6 new SNe at mid and high z
Uniform analysis of all SNe

Blind analysis to avoid biases

Largest Hubble diagram to date:
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Tightest constraints on dark energy
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The large number of SNe allows us to run

diagnostic tests and see tensions between samples
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zero curvature and constant w assumed
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Do We See Dark Energy at High z ?

Supernova Cosmology Projec
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-_ Summary of Union2 Systematics

Source Error on w
Zero point 0.037
Vega 0.042
Galactic extinction normalization 0.012
Rest-frame U band 0.010
Contamination 0.021
Malmquist bias 0.026
Intergalactic extinction 0.012
Light-curve shape 0.009
Color correction 0.026

Quadrature sum (not used) 0.073

Table from Amanullah et al 2010, Apd, 716, 712
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eceer?) .r.~| Important Lessons from the Union2
- .
Compilation

* Main conclusion: current data do not constrain dark energy
at z>1
* Need more and better data: JDEM

* Other important lessons:
—Zero-point uncertainties among the most important source of
systematic
—ldea: treat them as nuisance parameters to be fitted (this can be
applied to other systematics as well, as done by Union2)
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The Joint Dark Energy Mission (aka JDEM)

* Proposed space-based, stage |V dark energy experiment to
study dark energy with multiple probes, including type la
supernovae
—The Union2 results show the need for JDEM

* JDEM will be systematics limited
—For Union2 statistical and systematic errors are about the same
already
* Calibration uncertainties will be among the most important
systematics
—Imperative to treat them properly: KM introduce a better way
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A Better Treatment of Systematics (1)

* Key observation: type la supernovae are standardizable
candles
—This means that after stretch and color correction their absolute
magnitudes in a band are the same.
* Zero-point uncertainties will affect all the supernovae in the
same way
—Supernovae observed in the same filter will be equally affected:
their observed magnitude will depend on their distance, their

absolute magnitude (same after standardization) and the same
filter Zero-point uncertainty.
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A Better Treatment of Systematics (2)

* Here's the algorithm:
—Treat filter Zero-point uncertainties as nuisance fit parameters

—Fit for all SNe at once with these additional fit parameters and
derive distance moduli for all SNe with their covariance matrix
(we will call this approach simultaneous fit)

—Do the cosmology fit

—W,W uncertainties are reduced because of self calibration

* Faccioli et al, 2010, (hereafter F10, submitted to Astroparticle
Physics, arXiv:1004.3511) use this approach to investigate
Zero-point uncertainties in future experiments
—Focus on JDEM, but method is general
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=24 Comparison with the Usual Approach

* The usual approach in treating Zero-point uncertainties is:

—Consider each SN in the survey separately and derive its
distance modulus with an uncertainty (we will call this approach
the SN by SN fit)

—Derive the cosmology

* Compute a covariance matrix for each systematic separately,
including Zero-point uncertainties

* Add them to the covariance matrix of the distance moduli computed
above

* Do the cosmology fit.
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o~ Investigating Zero-point Uncertainties In
JDEM

* We study a large set of mission configurations
—Different number of SNe and maximum survey redshifts

—Inclusion of color uncertainties

* Important note: by color uncertainties we mean in the following
a residual, band dependent uncertainty that is left after the
supernova color had been determined

—Inclusion of other systematic error models, such as the Linder &
Huterer (LH) systematic.
* F10 incorporate all this in the SNAP/JDEM simulation tool,
SNAPsIim

—CQiriginally developed for SNAP, now part of JODEM/WFIRST
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Mathematical Model of Simultaneous Fit

A
my, = g + (S = 1)+ M(z1), + Ay'alzy), + (R—‘;)lb(ffl)k + 2
st = 1
A
my = i+ a(SY 1)+ Mg+ AvValen) + () ben)k + 2
N, = gN
ZObSk — Zk
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- Running the Simulations

* We first compare simultaneous fit vs SN by SN fit; then we
explore the survey parameter space

—We are interested in the best we can do for given number of
observed SNe, N, or maximum redshift z, therefore we vary
them independently of each other

—We do not consider joint constraints on N and z imposed by
survey duration (important, but is is not the focus of our study)

* Baseline survey configuration:
—Aperture 1.5 m
—8 Filters, 5 visible, 3 NIR
—2000 SNe with flat z distribution + 316 nearby (0.03<z<0.08).

—Maximum survey redshift 1.5
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Sy Simulating the SN by SN fit with MC

* We simulate a Zero-point covariance matrix via MC
—create SN models at specific zs, add random shifts, find w
—Build a u covariance matrix for the SNe from all MC runs
—Store this matrix for future use

* For each SN pair in the real dataset (or in the dataset that
simulates future real datasets such as JDEM's)

—Spline interpolate the Zero-point covariance matrix to obtain the
Zero-point covariances of the two SNe

—Obtain a Zero-point covariance matrix for the dataset
* Add this covariance matrix to the other matrices and do the
cosmology fit
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Supernova by Supernova Fit vs

Simultaneous Fit: Results

Zero-point prior Figure Of Merit

olor uncertainty O olor uncertainty 0.00 olor uncertainty 0.0

SN by SN | SimFit | SN by SN Sim Fit N by SN imFit | SN by SN | Sim Fit
0 311 311 306 306 295 295 262 262
0.001 246 309 244 302 238 288 217 252
0.002 167 309 166 298 163 283 153 246
0.003 122 308 121 295 120 278 113 239
0.004 95 308 94 292 93 273 88 232
0.005 76 308 76 291 75 268 71 226
0.006 63 308 62 290 61 265 58 219
0.01 35 308 35 288 35 257 33 202
0.02 17 308 17 287 17 252 16 186
0.03 11 308 11 286 10 251 10 181
0.04 7 308 7 286 7 251 7 179
0.05 NC 308 NC 286 NC 250 NC 179

Zero-point prior and color uncertainties in mag

Figure of Merit (FOM): inverse of the error ellipse area in the
w, w_plane

The simultaneous fit outperforms the SN by
SN fit, both without and with color uncertainty
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<111 Self Calibration in Action

HEAKELEY Lam
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e § Why is the SN by SN fit so bad?

Zero-point standard deviations estimated from Monte Carlo vs z

Zero Point Prior =0.002 mag
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Moo Réflshi%fo A o e Régshi%;bo A
Fitting for dust parameter Dust parameter B =A /R
B=A/R, fixed to 3.1
(Used in the simulations) (Not used in the simulations)

e Fitting for B increases the Zero-point standard deviations by
factor of ~3, degrading the fit performance in the SN by SN fit

e We cannot assume a Milky Way extinction law: need to fitfor B .
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Zero-point vs Color Uncertainty

Self Calibration Regime:
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Varying the Baseline Survey

Starting from the baseline survey we varied independently

—The number of observed SNe.

—The maximum survey redshift.

—The maximum allowed prior zero-point uncertainties.

* Results shown as contours of constant FoM with two of the
above parameters varying and the third fixed

* We include the LH systematic to describe other sources of

systematic uncertainty

* In the following we assume a color uncertainty 0.01 mag.
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The Linder Huterer Systematic

Linder & Huterer (2003) introduce a systematic error model:

1+ z

Zmax

Ap = 0.02 "

We include one half of this systematic to model other
systematics:

—LH covariance matrix added to the distance modulus covariance
matrix before doing the cosmology fit.
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Zero-point Prior vs Number of SNe
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Zero-point Prior vs Maximum Redshift

N_=2000
Color Uncertainty=0.01
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Maximum Redshift vs Number of SNe
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; Conclusions

Current data do not constrain dark energy at z>1
—dJDEM needed to do better

Zero-point uncertainties are among the most important
systematic in supernova dark energy experiments

KM introduce a better and general way of dealing with them

Union2 use KM to reduce their overall systematic and
achieve the tightest constraints on dark energy to date

F10 apply the approach to study future experiments, taking
as example JDEM/SNAP; more studies can be done

Our simulation tool allows for much more comprehensive
studies of future missions
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The Future

* F10 consider SNAP/JDEM but the method is general and
recommended for future experiments (DES, JDEM, LSST)

* The parameters space to explore is vast and F10 only
consider a part of it; however our simulation tool can easily
sample the whole space and produce comprehensive studies
of future experiments

* Other sources of systematics (e.g. LH) are important; crucial
to better study them before stage Il and IV experiments get
under way

* More work to be done: e.g. better treatment of host galaxy
extinction (so far we assumed CCM)
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