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Dark because no electromagnetic interactions
Cold because very massive (~10 GeV to ~10 TeV)
Non-baryonic and stable - no problems with BBN or CMB
Weak-scale annihilation cross-sections naturally lead to a
relic abundance of the right order of magnitude
Many theoretically well-motivated particle candidates

@ SUSY neutralinos y if R-parity is conserved - lightest combination

of neutral Higgsinos and gauginos

o Inert Higgses - extra Higgs in the Standard Model

o Kaluza-Klein photon or Z

o right-handed neutrinos, sneutrinos, others. ..
Weak interaction means scattering with nuclei
— detection channel
Many WIMPs are Majorana R
— self-annihilation cross-section — detection channel

New results from dark matter minihalos Pat Scott — Sep 26 2011 — Fermilab



Introduction

jlance

© 06 0 ©

(%)

Qo

Dark because no electromagnetic interactions
Cold because very massive (~10 GeV to ~10 TeV)
Non-baryonic and stable - no problems with BBN or CMB
Weak-scale annihilation cross-sections naturally lead to a
relic abundance of the right order of magnitude
Many theoretically well-motivated particle candidates

@ SUSY neutralinos y if R-parity is conserved - lightest combination

of neutral Higgsinos and gauginos

o Inert Higgses - extra Higgs in the Standard Model

o Kaluza-Klein photon or Z

o right-handed neutrinos, sneutrinos, others. ..
Weak interaction means scattering with nuclei
— detection channel
Many WIMPs are Majorana R
— self-annihilation cross-section — detection channel

New results from dark matter minihalos Pat Scott — Sep 26 2011 — Fermilab



Introduction

Dark because no electromagnetic interactions
Cold because very massive (~10 GeV to ~10 TeV)
Non-baryonic and stable - no problems with BBN or CMB

Weak-scale annihilation cross-sections naturally lead to a
relic abundance of the right order of magnitude

Many theoretically well-motivated particle candidates
@ SUSY neutralinos y if R-parity is conserved - lightest combination
of neutral Higgsinos and gauginos
o Inert Higgses - extra Higgs in the Standard Model
o Kaluza-Klein photon or Z
o right-handed neutrinos, sneutrinos, others. ..

© 06 0 ©

(%)

Qo R

New results from dark matter minihalos Pat Scott — Sep 26 2011 — Fermilab



Introduction

the smallest dark matter structures

In standard cosmology, inflationary perturbations are weak,
Gaussian and scale-free

@ Enter horizon during radiation domination (or earlier)

@ Grow logarithmically until matter domination, then grow
linearly

@ Go non-linear and collapse z < 30, seeding star formation

@ For WIMPs, lower mass cutoff is approximately set by
kinetic decoupling
— free streaming scale, ~107%* My (Bringmann 2009)
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Introduction

the smallest dark matter structures

In standard cosmology, inflationary perturbations are weak,
Gaussian and scale-free

@ Enter horizon during radiation domination (or earlier)

@ Grow logarithmically until matter domination, then grow
linearly

@ Go non-linear and collapse z < 30, seeding star formation

@ For WIMPs, lower mass cutoff is approximately set by

kinetic decoupling
— free streaming scale, ~107%* My (Bringmann 2009)

Things could be a bit more interesting, however. . .

@ Departures from scale invariance or Gaussianity could inject
extra power
— objects collapse earlier, into ultracompact minihalos

@ WIMP dark matter could feed back on star formation, F?l
creating ‘dark stars’ ‘
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Ultracompact minihalos

e Ultracompact minihalos
o Observational predictions & constraints
@ Primordial power spectrum limits at small
scales
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Ultracompact minihalos

tracompact minihalo?

©

Small-scale, large amplitude density perturbations in the
early Universe create ultracompact minihalos (UCMHSs)
Ricotti & Gould (2009), Berezinsky et al. (multiple earlier papers)

o ‘Failed primordial black holes’
o Very dense dark matter minihalos

@ Enhanced perturbations produced by e.g. inflaton potential
or phase transitions

@ Non-baryonic, diffuse MACHOs

@ Also excellent indirect detection targets
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Ultracompact minihalos

ion

o Formed (or at least ‘seeded’) well before matter-radiation
equality

o Full gravitational collapse before z = 1000

@ Requires § > O(1073)
(compare with normal inflationary perturbations § ~ 10~9)

@ — much more likely than PBH formation (6 = 0.3)
o UCMH mass is set by horizon scale at time of transition
o — specific UCMH mass = specific cosmological scale

o — limit on abundance of specific mass halo = limit on
power on specific scale k
(Recent limits from Josan & Green (2010), improved analysis here) vy
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Ultracompact minihalos

y profiles

o Initially single UCMH per horizon, minimal initial angular
momentum

o — UCMHs form via radial infall

o — Very steep radial density profile

3f, Muycmu

px(r) = X§—9, (1)

167 R’ *

o Truncated at self-annihilation radius rsa, and radius ram
where gas angular momentum violates radial infall approx.

8 11
my opmRuemu
fop) = ——=—— v = ———2 2
P( SA) <UV>(t tl)’ AM (3%M5CMH ( ) i'éj
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. Observational predictions & constraints
Ultracompact minihalos

ark Matter: Indirect Detection

DM-DM annihilation producing SM particles ®

S
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Ultracompact minihalos

ark Matter: Indirect Detection

DM-DM annihilation producing SM particles ® 51
© e*/e” — PAMELA, Fermi, ATIC, AMS-02 N
@ gamma-rays — Fermi, HESS, VERITAS, MAGIC, CTA %
@ anti-protons — PAMELA, AMS-02 ® A7 _
oV
@ anti-deuterons — AMS-02, GAPS W
@ neutrinos — IceCube, ANTARES

New results from dark matter minihalos Pat Scott — Sep 26 2011 — Fermilab



. Observational predictions & constraints
Ultracompact minihalos

ark Matter: Indirect Detection

DM-DM annihilation producing SM particles ® P,
0 e*/e” — PAMELA, Fermi, ATIC, AMS-02 \ /
@ gamma-rays — Fermi, HESS, VERITAS, MAGIC, CTA 2‘»
@ anti-protons — PAMELA, AMS-02 ®/ AN g
SM.
@ anti-deuterons — AMS-02, GAPS
@ neutrinos — IceCube, ANTARES

2 photons (or Zsphoton):
monochromatic lines

New results from dark matter minihalos Pat Scott — Sep 26 2011 — Fermilab



. Observational predictions & constraints
Ultracompact minihalos

Jark Matter: Indirect Detection

DM-DM annihilation producing SM particles ® o
0 e*/e” — PAMELA, Fermi, ATIC, AMS-02 \ /
@ gamma-rays — Fermi, HESS, VERITAS, MAGIC, CTA 2‘»
@ anti-protons — PAMELA, AMS-02 ®/ AN e
[
@ anti-deuterons — AMS-02, GAPS
@ neutrinos — IceCube, ANTARES

2 photons (or Z+photon): Internal bremsstrahlung:
monochromatic lines hard gamma-ray spectrum

New results from dark matter minihalos Pat Scott — Sep 26 2011 — Fermilab



. Observational predictions & constraints
Ultracompact minihalos

Jark Matter: Indirect Detection

DM-DM annihilation producing SM particles ® o
0 e*/e” — PAMELA, Fermi, ATIC, AMS-02 \ /
@ gamma-rays — Fermi, HESS, VERITAS, MAGIC, CTA 2‘»
@ anti-protons — PAMELA, AMS-02 ®/ AN e
[
@ anti-deuterons — AMS-02, GAPS
@ neutrinos — IceCube, ANTARES

2 photons (or Z+photon): Internal bremsstrahlung: Secondary decay:
monochromatic lines hard gamma-ray spectrum soft(er) continuum spectrum
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Ultracompact minihalos

uxes from UCMHs

o Take e.g. d =100pc

@ Minihalos produced at e.g. time
of the e™ e~ annihilation epoch
should be visible today by Fermi
or HESS, or even in EGRET data

@ Strongly constrains spectrum of
perturbations formed at time of
e e~ annihilation phase

o Gravitational contraction of
UCMHs makes little difference

1077

1072

Observational predictions & constraints

EGRET

Fermi-LAT

QCcp

Dhase
ase trang;; ion

F=10""" 5 no boost

— NoAC  jfu: boost = 100
I

100
WIMP mass (GeV)
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Ultracompact minihalos

Observational predictions & constraints

sent-day UCMH abundance with Fermi

@ 1-year, 50 upper limits

o Based on public Fermi
point source sensitivity

o Proper statistical treatment
of observable limit
o Rather conservative
assumptions:
100% bb
(ov) =8.10726cm3 s
m, =5TeV
no DM minihalo
detected

@ Microlensing limits also
competitive at large k

Mycwmu (Mg)

O 9 a 6 O o) I S - S N S R R
0710 10 4T A0 AT A0 A 0 1 i A R A e e

|

HTTTTTTTLTTTTTTTTI

= “ 3

E =

E =

E =

E —— point source (Fermi-LAT) 3
T =+ microlensing (EROS/OGLE) —of

C 11 IIIIIII 11 IIIIIII 11 IIIIIII 11 IIIIIII 1l IIIIIII 1l IIIIIII 1

0 10° 10° 101 10° 106 107

k (Mpc™!)
L33

New results from dark matter minihalos Pat Scott — Sep 26 2011 — Fermilab



ltracompact minihalos 5 R s
Ultracomp Primordial power spectrum limits at small scales

@ Uitracompact minihalos

@ Primordial power spectrum limits at small
scales
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Ultracompact minihalos . . .
Primordial power spectrum limits at small scales

ensity calculation

o For some distribution of perturbations pdf(¢)

1+ 2z, dpBH
oot — (q) [ wartaas 3)

1 + Zstop

(Smin

@ For Gaussian perturbations,

(52
df(d) = exp| - ———— 4
pdf(0) V212 (2. R) p< 20)2“,_,(2;(,/?)2) )
644
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Ultracompact minihalos . . .
Primordial power spectrum limits at small scales

ower law) spectrum
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Ultracompact minihalos

Primordial power spectrum limits at small scales

ower law) spectrum

n—1 0o
aiH(H)fva?(tko)(") [ xme T o wh /T2 (1) ax (9

ko

o Early-time (z ~ 800)
contribution of UCMHs to
reionisation is
constrained by WMAP 7
(Zhang 2010)

o — weak, but no mass
cutoff, so covers more k
than microlensing or
gamma-rays
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Ultracompact minihalos . . .
Primordial power spectrum limits at small scales

h a step

a® —a2if %—x + p26 x—% dx (6)
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Ultracompact minihalos

Primordial power spectrum limits at small scales

limits on step spectrum

= point source (Fermi-LAT), n = 0.968 % 0.012
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Ultracompact minihalos . . .
Primordial power spectrum limits at small scales

rum and curvature perturbation limits
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Ultracompact minihalos 5 R A
P Primordial power spectrum limits at small scales

nclusions

@ Ultracompact minihalos are promising indirect detection
targets

@ Could be visible by Fermi/VERITAS/HESS/CTA

@ Assuming DM annihilates, non-observation places limits on
primordial perturbations at small scales

@ Derived limits are much tighter than existing ones from
primordial black holes

o ...Dbut weakened slightly by careful treatment of mass
variance, radial profile and minimum density contrast
required for formation
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Dark stars and reionization

© Dark stars and reionization
@ Impacts on reionization and the CMB
o Implications for dark stars and reionization
models am
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Dark stars and reionization

potter’s Guide to the Universe

(My preferred definition of) a ‘dark star’: any star whose
structure or evolution has been affected by WIMP annihilation

2 main ways to get the DM into the star:

o gravitational contraction: baryons collapse, change the
gravitational potential, taking the DM along for the ride
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Dark stars and reionization

yotter’s Guide to the Universe

(My preferred definition of) a ‘dark star’: any star whose
structure or evolution has been affected by WIMP annihilation

2 main ways to get the DM into the star:

o gravitational contraction: baryons collapse, change the
gravitational potential, taking the DM along for the ride

@ nuclear scattering: WIMPy passers-by scatter off stellar
nuclei and begcome gravitationally bound

@5 o

&
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Dark stars and reionization

potter’s Guide to the Universe

(My preferred definition of) a ‘dark star’: any star whose
structure or evolution has been affected by WIMP annihilation

= There are many kinds of dark stars...
@ Main sequence stars in the Milky Way - fed by scattering,
maybe interesting (Salati, PS, Fairbairn, et al.)

o White dwarfs in the Milky Way - fed by scattering, maybe
interesting (Moskalenko, Wai, Fairbairn, et al.)

@ Neutron stars in the Milky Way - fed by scattering, probably
not interesting (Bertone, Fairbairn, et al.)

o Pop Il stars in the early Universe - fed by grav. contraction
and *maybe* scattering, maybe interesting (Spolyar, Freese,

Gondolo, locco, et al.) @
¥
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Dark stars and reionization

Spotter’s Guide to the Universe

(My preferred definition of) a ‘dark star’: any star whose
structure or evolution has been affected by WIMP annihilation

= There are many kinds of dark stars...
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Dark stars and reionization

ey got there, effects are similar

WIMPs congregate in the star and self-annihilate

%.

= standard model particles (= heat) are injected into the gas

Stars end up looking larger, puffier and cooler than normal
Pop Il
...and live longer?
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Dark stars and reionization

odels with dark stars

Standard reionisation code: semianalytical models of
Venkatesan, Tumlinson & Shull (2003), Venkatesan (2000)

o Press-Schechter-based

o Follows temperature and collapse of each halo, mergers of
halos

o Tracks halo history, including stellar populations and
ionisation fronts

o Assume 10-140 M, Salpeter IMF for normal Pop Il stars
(Tumlinson 2004), in a 10 Myr starburst

o Followed by Pop
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Dark stars and reionization

odels with dark stars

Additional population of 800 M, dark stars (following 100 GeV track from
Spolyar et al, 2009) with
Olol(t) = fDSQDS(t) + (1 - fDS)Qnormal(1)~ (9)

Qs calculated from dark star stellar atmospheres (a la Zackrisson, Scott, et
al 2010a, 2010b)

2 phases:
@ Dark star proper (DSP — cool, dark matter dominated — Qps = 0)

@ Dark star near the main sequence (DSNMS — hot, small amount of
annihilation — resembles main sequence but slightly cooler)

3 scenarios:

@ NC - No capture; no nuclear scattering, dark stars die quickly and are
replaced by Pop /11

@ MC — Meagre capture; enough nuclear scattering that the DSNMS

phase is extended, DSP is not [y
@ EC - Extreme capture; enough nuclear scattering that the DSP phase Oy

is extended, DSNMS is not
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Impacts on reionization and the CMB

Dark stars and reionization

© Dark stars and reionization
@ Impacts on reionization and the CMB
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Impacts on reionization and the CMB

rk stars and reionization
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Impacts on reionization and the CMB

rk stars and reionization

history of the Universe
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rk stars and reionization

MB optical depth
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Impacts on reionization and the CMB

Dark stars and reionization

CMB optical depth

Dark star fraction fpg
Integrated optical depth 7,
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DSP lifetime tnsp (Myr)
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Dark stars and reionization

MB polarisation power spectrum
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I Implications for dark stars and reionization models
Dark stars and reionization

© Dark stars and reionization

o Implications for dark stars and reionization
models R
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IS Implications for dark stars and reionization models
Dark stars and reionization

dark star parameters
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for reionization parameters
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Implications for dark stars and reionization models

Or reionization parameters
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Dark stars and reionization

eionization — Conclusions

Impacts on the reionization history of the Universe
o EC dark stars could substantially delay reionization
@ MC dark stars could slightly hasten reionization
o Without capture, dark stars have no impact on reionization

Signatures in the CMB
o EC dark stars decrease CMB optical depth, MC dark stars
increase it slightly
@ — constrains dark star lifetimes to < 250 Myr,
abundance to < 90% by mass
o Produces characteristic signatures in EE polarisation
power spectrum R
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Implications for dark stars and reionizati
Dark stars and reionization plications for dark stars and reionization models

ry

@ The smallest dark matter halos are arguably the most
interesting

o Could be UCMHs

o = good indirect detection prospects

o = strong limits on amplitude of primordial density
perturbations on small scales

o Could harbour dark stars

o would delay reionization if WIMP capture by nuclear
scattering is important

o changes CMB optical depth, CMB power spectra, EE
polarisation especially

o constrains dark star parameters

o has implications for standard reionization parameters also g3

L33
W
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