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Dark Matter 1 n the Universe

Extensive evidence for the presence of dark, non-baryonic matter,
dominating the mass balance of the Universe at scales above 100 pc.
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DM as change of gravity |aws?
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In this talk | assume that DM is made of particles and the gravity is not modified.
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Uni versality of DM hal os
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Dark matter - a fundanental physics problem
Is evidence for DM convincing?
— yes
| Il 1]
mass | 2.4 MeV 1.27 Gev 171.2 Gev
charge - |24 g % g 25 [ I
“Tu ([FC || _t Is DM made up of particles? —
- E | EEEEE | most plausible assumption
& KR | e Is DM baryonic? — no (MACHO
V. |V oV, & searches; BBN constraints; structure
e it | nelfiho g formation problems)
:%n -1 e -1 1 T ;‘g; . 5
= E » g Is DM made from neutrinos? —

Nno (neutrino DM would contradict the
observed LSS)

Astrophysics and cosmology are the tools to
learn about the fundamental physics
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DM properties: what can be | earned?

m Dark matter particle mass
(Tremaine-Gunn bound, .. .)

m Dark matter primordial velocities (characterize the way the dark
matter particles were produced and be studied by their imprints on
structure formation)

(CMB+LSS, Lyman-«, halo statistics, .. .)

m Dark matter particle interactions (self-interaction, inelastic
scattering, annihilation/decay into ordinary matter, ...) and
Interaction strength
(search for decay/annihilation products, bullet cluster, .. .)
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DM candi dates. What do we expect?

Two major approaches

THEORETICAL.: PHENOMENOLOGICAL:
based on based on minimalistic approach

aturalness fine—tunings etc (describe DM puzzle, possibly in
, ) . a wider framework)

1 1

Leading candidate: Candidates include
WIMP Super-WIMP

Mass: 10-1000 GeV Mass:0.5 keV — ...

Searched by PAMELA, Searched by ?7?77?

Fermi, laboratory searches...
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Super-Wakly Interacting Massive Particles

m Phenomenologically we know little about the properties of dark
matter particles

m Theoretical bias aside, dark matter particles should generically
have “weaker-than-weak” interaction strength with the Standard
Model sector (super-weakly interacting particles)

m Such DM candidates indeed appear in many extensions of the
Standard Model (sterile neutrinos, gravitino, axion, axino, Majoron,. . .)

m For super-weakly interacting particles laboratory “direct detection”
methods may be quite challenging —

For Super-WIMPs astrophysics and cosmology may be
our main tools to discover the true nature of dark matter
particles
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Interaction of dark and
ordinary matter

Astrophysical dark matter
search
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Mass of DM particl es?

The model-independent lower limit on the mass of fermionic DM Tremaine,
Gunn (1979)

m The smaller is the DM mass — the bigger is the number of particles
In an object with some velocity dispersion o

m For fermions there is a maximal phase-space density (degenerate
Fermi gas) = observed phase-space density restricts number of
fermions

m Objects with highest phase-space density — dwarf spheroidal
galaxies — lead to the lower bound on the DM mass:

Mass of DM particle = 400 eV O.R.+ 2008

m Active neutrinos with m ~ 300 eV have primordial phase-space density
Q ~ Q.ps. Neutrino DM abundance ), h* = 51 ¢y = Active neutrinos cannot
constitute 100% of DM
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| nt eracti ons of super-W MPs

m From a theorist’s point of view DM particles should generically be
decaying (unless some exact global symmetry protects them)

m Weakly interacting dark matter should be stable (n — p+e-+2v.). WIMPS interact
with SM particles via annihilation only. Expected signals: anti-matter excess, flux
from the Galactic center, dwarfs, ...

m Expected decay channels (especially below 1 MeV): ( DM — ~ +
v, ¥+7,...)—1to neutrinos and photons
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DM col unmm density

m Signature of radiative decay: monochromatic line from all dark
matter overdensities. The energy E., = s Mpuc?

m Flux from DM decay:

FE T g2
Foy = Doug 7 / pEM( ) it gy - radt Hov o
Mpwm 47|Dy, + 7|2 87

fov cone

m DM column density

— integral along the line-of-sight, averaged within the instrument’s
field-of-view
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Decay signal from MMsi zed gal axy

Moore et al.
2005

/PDM(T)d"“
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Anni hilation signal from MMsi zed gal axy

Moore et al.
2005

/P%M(T)dT
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How to check DM origin of a |1 ne?

m Many DM-dominated objects would provide comparable decay
signal. Freedom in choosing observation targets that optimize the
signal-to-noise ratio (with well-controlled astrophysical backgrounds).

m Candidate line can be distinguish from astrophysical backgrounds
by studying its surface density and sky distribution
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Al | - sky source

1029

0 o0 100 150
¢|degrees]

m DM is an all-sky source
m Its variability over the sky can be as low as factor of 3
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SPI: spatial profile of |iInes
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Search for decaying DM nmai n chal | enges

m Control of astrophysical SLE E
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Checking DM origin of a line

m Dark Matter Search Using Chandra Observations of Willman 1, and Loewenstein ¢
a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile Kusenko

Neutrino
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m Can the excess in the FeXXVI Ly gamma line from the Galactic prokhorov &
Center provide evidence for 17 keV sterile neutrinos?

Silk (Jan’2010
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Do we see this |1 ne anywhere el se?

Sy Msunp@ Objects with comparable
expected signal for which
archival data is available

m Fornax dSph (XMM)
Sr = 54.4Mopc?2

60
50

40 M31

m Sculptor dSph
(Chandra)
Willman1  Sg. = 140M pc™?

30

20
Sculptor
)

10 Formare m Andromeda galaxy
b o (M31) :
0 50 100 150 Sz ~ 100 — 600M fpc?

Do we see this 2.5 keV line?
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DM I n Androneda gal axy (2008)
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DM I n Androneda gal axy (2010)
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Checking for DMIine in M1l
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Willman 1 spectral feature excluded with high significance from
archival observations of M31 and Fornax and Sculptor dSphs
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How to check DM origin of a |1 ne?

m Many DM-dominated objects would provide comparable decay
signal. Freedom in choosing observation targets that optimize the
signal-to-noise ratio (with well-controlled astrophysical backgrounds).

m Candidate line can be distinguish from astrophysical backgrounds
by studying its surface density and sky distribution .

For decaying dark matter

indirect search becomes
direct!
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Restrictions on |life-tinme of decaying DM

Many groups,
29 incl. O.R. with
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Restrictions on |life-tinme of decaying DM

m Is 10%° — 10%° sec a long lifetime? Is it something to be expected?

m In what situations an upper bound on the lifetime of DM can exist?
Should we continue to search?

m We need some reference model to answer these questions

Oleg Ruchayskiy W HAT DO WE KNOW ABOUT DM? 25



Restrictions on |life-tinme of decaying DM

m Is 10%° — 10%° sec a long lifetime? Is it something to be expected?

m In what situations an upper bound on the lifetime of DM can exist?
Should we continue to search?

m We need some reference model to answer these questions

Let us look at a particular
super-WIMP dark matter model
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DM candi dat es.

What do we expect?

Two major approaches

THEORETICAL:
based on

naturalness, fine—tunings, etc.

1

Leading candidate:
WIMP

1

Mass: 10-1000 GeV
Searched by PAMELA,
Fermi, laboratory searches...

PHENOMENOLOGICAL:
based on minimalistic approach

(Okkam'’s razor)

1

Leading candidate:
Super-WIMP

1

Mass:0.5 keV — ...
Searched by ?7?77?

Oleg Ruchayskiy W HAT DO WE KNOW ABOUT DM?

27



Wiy (and where) we expect new physics?

Neutrino oscillations : m, ~ \/Am2, . ~ 1072 eV.
See-saw mechanism m, ~ v%/A, where v = (H) = 174 GeV and
new scale A ~ 101° GeV

Dark matter (not a SM particle!)

— particles with weak cross-section will have correct abundance
Qom (“WIMP miracle”). New scale ~ 1 TeV
— Axions. New scale 10'° — 102 GeV.

Baryon asymmetry of the Universe : what ensured that for each
1019 anti-protons there was 10'° 4- 1 proton in the early Universe?

— Sakharov conditions:  CP-violation; B-number violation; out-of-
equilibrium processes (leptogenesis, phase transitions, etc.)

Fine-tuning problems: CP-problem, hierarchy problem, grand
unification, cosmological constant problem
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Neutri no oscill ati ons

Experiments on neutrino oscillations determined two mass differences
between neutrino mass states.
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Sterile neutri nos?

Experiments on neutrino oscillations determined two mass differences
between neutrino mass states

Three Generations

of Matter (Fermions) spin ¥z Rt =N b5 _CHORUS =54
| I 1l 5 1 " HOMAD et
mass - 2.4 Mev 1.27 GeV 171.2 GeV 10
charge - [ 23 l I L) C %A t
name - up charm top
104 MeV 4.2 GeV 10_3
s b
Q
strange bottom >
— L
~0.01eV / ~GeV|| ~0.04eV / ~GeV c >114 GeV —
= -
VN, |V ; 'H 50
i 0
tau /" sterjle 0 Hi
electrpn sterile muon’ - sterile ' : iggs
neutrino neutring | "€UYAO neytring neutring neutrino g boson
LL .
o 0.511 MeV 105.7 MeV 1.777 GeV —~ spin 0
%)
5 |1 1 1 c
=3 e T ? 1072
Q o
- electron muon tau o

The most natural explanation of neutrino
experiments — right-chiral neutrinos in the 10752 U
Standard Model a1

http://hitoshi.berkeley.edu/neutrino
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See- saw Lagrangi an

Add right-handed neutrinos /N; to the Standard Model

L v— N N—_N
Lsee-saw = ¢N1PN1 + (mixing matrix) + ( mixing )

- v . v
Dirac mass M p Majorana mass My

m Active masses are given via usual see-saw formula :

1
T .
(mu) — _MDirac MDirac ) MDirac < MMajorana
MMajorana

m Neutrino mass matrix — 9 parameters . Dirac+tMajorana mass
matrix — 11 (18) parameters for 2 (3) sterile neutrinos. Two sterile
neutrinos are enough to fit the neutrino oscillations data.

Scale of Dirac and Majorana masses is not fixed!
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Sonme general properties of sterile neutrino

m Sterile neutrinos are decaying particles

M;<1MeV M;>1MeV M; > 150 MeV
N; — vvi N; - vete~ N;— mteT
Ni — vy N; — 7y

m Short lifetime — decay in the early Universe. Can have CP-violating
phases. Leptogenesis? Affect BBN?

m Lifetime 7 o< 67 2M;°. (Cosmologically) long lifetime — dark matter
candidate?

m Mixing angle 6;:

M2

Dirac,al

9%: Z M2

a=e,u,T Majorana, I

<1
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The scale of right-handed masses?

“Popular” choices of see-saw parameters

m Yukawa couplings F,; ~ 1, i.e. Dirac masses Mp ~ M;. Majorana
masses M; ~ 10'° GeV.

m Attractive features:

— Provides a mechanism of baryon asymmetry of the Universe
— Scale of Majorana masses is possibly related to GUT scale

m This model does not provide the dark matter particle

m Alternative? Choose Majorana masses M of the order of masses
of other SM fermions and make Yukawa couplings small
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Al ternative: vIVBM

m An alternative choice of parameters: make the masses of new
fermions of the same order as those of other leptons in the SM

m Such a model is called Neutrino (extended) Minimal Standard
Model — vMSM for short

The model solves several beyond the Standard Model problems

v/ ...explains neutrino oscillations
v/ ...matter-antimatter asymmetry of the Universe

v/ ...provides a viable dark matter candidate that can be cold, warm
or mixed (cold+warm)

v' Provides complete description of the Universe history from
Inflation till today
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Choosi ng paraneters of the vNMSM

Asaka &

m Two sterile neutrinos with AM <« M can explain neutrino Shaposhnikov

oscillations and provide baryogenesis mechanism

1 Constraints
10" —from primordial
synthes of light elemen

(2005);

Canetti &
Shaposhnikov
(2010)
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Paraneters of the third sterile neutrino?

m The third sterile neutrino can couple to the SM arbitrarily weakly.

Dark matter candidate? Dodelson &
Widrow (1993
m Any DM candidate must be Shi & Fuller
: : : (1998)
— Produced in the early Universe and have correct relic abundance
_ _ Abazajian et
— Be stable or cosmologically long-lived al. 2001-2005

— Very weakly interacting with electromagnetic radiation (“dark™  Asaka,
Shaposhnikov

— Allow to explain the observed large scale structure etal. 2005-....

m Sterile neutrino interaction : similar to Standard Model neutrinos
but the interaction strength is suppressed by the mixing angle 6

_ M5

2
Q—E
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How sterile neutrino DMis produced?

m Phenomenologically acceptable values of 6, are so small, that the
rate of this interaction I' of sterile neutrino with the primeval plasma
IS much slower than the expansion rate (I' < H)
= Sterile neutrino are never in thermal equilibrium

m Simplest scenario:  sterile neutrino in the early Universe interact

with the rest of the SM matter via neutrino oscillations: Dodelson &
Widrow’93

e

Asaka, Laine,
Shaposhnikov

m Production is sharply peaked at

M\ 3
Trax >~ 130 MeV
( kev)
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Production through oscillations

m Sterile neutrinos have non-equilibrium spectrum of primordial

velocities, roughly proportional to the spectrum of active neutrinos

92
exp(£) + 1

fs(p) o

m Their amount less than that of active neutrinos

M y
i recall: SM neutrinos Q,h° = 2 m

2 2
Lsh” o 94 eV 94 eV

m Sterile neutrino decay: (N — vvv or N — vv)

m Decay rate: I' o« aGZ sin*(20) M7
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Bounds on decaying DM from vari os objects

MW (HEAO-1)
Boyarsky, O.R
et al. 2005
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Bounds on sterile neutrino nass

Asaka et al.
(2006)

' |

sin229
|_\
)
|

1 0—10 Production via oscillations

—— case 1 - 2 (mean)
-~ absolute upper bound
ffffff absolute lower bound

10—12

10° 10"
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Resonant producti on

m The presence of lepton asymmetry in primordial plasma makes

active-sterile mixing much more effective (as in MSW effect). Shi & Fuller
(1998)
m Lepton asymmetry for this to be effective should be large Laine &
Shaposhnikov
Ny, — Ng (2008)
Lg=100"2 " >
S
(present BBN bound LN < 2500) Serpico &

_ _ _ Raffelt (2005)
— resonant production of sterile neutrino

m Typically, one expect the lepton asymmetry to be ~ ng (sphalerons
equilibrate the two)

m In the yMSM CP-violating scatterings/decays of sterile neutrinos
continue to generate lepton asymmetry below the sphaleron scale

thus making it significantly large than np Shaposhnikov
(2008)
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W ndow of paraneters of sterile neutrino DM

Laine,

- Shaposhnikov
10°°
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0.3 1 10 100

DM mass [keV]
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W ndow of paraneters of sterile neutrino DM

Asaka, Laine,
Shaposhnikov

Laine,
Shaposhnikov
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W ndow of paraneters of sterile neutrino DM

Asaka, Laine,
Shaposhnikov

Laine,
Shaposhnikov

from X-rays- O.R. and
many others

2005-2010
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W ndow of paraneters of sterile neutrino DM

Asaka, Laine,
Shaposhnikov

Laine,
Shaposhnikov

O.R. and
many others
2005-2010
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W ndow of paraneters of sterile neutrino DM

Asaka, Laine,

Shaposhnikov
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Restrictions on |life-tinme of decaying DM

mIs 10°° — 10*° sec a long lifetime? Is it something to be expected? —
Sterile neutrino DM naturally requires 6 < 1 to provide correct DM
abundance for keV (MeV) masses

B In what situations an upper bound on the lifetime of DM can exist? Should
we continue to search? — If the same interaction was responsible for
production of DM particles and their decay, than search for decay
signal provides us with valuable restrictions

m In the vy MSM — can we push further into the interesting region of low
masses (and high lepton asymmetries)?

m ... These particles were produced relativistic (at the time of production
(p) ~ 300 — 500 MeV mass < 50 keV)
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Probing primordial velocities
of dark matter particles
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Free-stream ng and power suppression

Free relativistic particles do not cluster

DM particles erase primordial spectrum of to(t))dt!
density perturbations on scales up to the DM \%q = / ”
particle horizon — free-streaming length o alt)

Comoving free-streaming ~ horizon at the time of non-relativistic
transition t,,,. (When(p) ~ m)

Free-streaming horizon determines power spectrum suppression
scale.

For particle with Fermi-Dirac spectrum (thermal relics) this
suppression is strong:

P(k) kes ) h M
T(k) = —= kes ~ 0.5
( ) \/PACDM(k) > ( k ) i MpC keV
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| nfl uence of prinordial velocities
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How to probe prinordial velocities?

m Primordial velocities affect :

— Power-spectrum of density fluctuations (suppress normalization
at large scale)

— Halo mass function (number of halos of small mass decreases)

— Dark matter density profiles in individual objects

m Scales probed by CMB experiments (linear regime of perturbation

growth)
k~ /¢ x @ = £ _nh
2 6000 Mpc

m IS sensitive up to scales & < 0.1 A/ Mpc

m Smaller scales? Non-linear stage of structure formation
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Hal o substructure 1n "cold" DM universe

[ alu\

45 x 10° substructures (Aquarius ~ 30 observed substructures within our
simulation) Galaxy. M. Geha 2010

Is small number of observed substructures due to dark matter
free-streaming?
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VWDM substruct ure suppression

Thermal relics with mass ~ 1 keV would erase too many Maccio&
substructures . Anything “colder” would produce enough structures (FZOO“(;;;‘_N
to explain observed Milky Way structures |

Polisensky &
Ricotti (2010)
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Lum nosity vs. nmass function

100.0F 7 T
' V=45 F,=3 107
/.=p5 F,=107"
o o —4
V.=p5 F,=3 10 1100
100 | — !
- 10.0 F |
C \
— \
A A \
2 z |
\i = 10
10 |- -] 1.0¢F
1
O.1 L ?
1 11 IIIIII IIIII IIII 1 1 L1 111l
107 108 10° 1010 101t —20
MDH [Me/h ]
Macci 0 & Fontanot’09 Koposov et al’09

Suppression of number of Bias between satellite luminosity

structures due to the free- function and halo mass function in
streaming ? ACDM?
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Probing prinordial velocities

m Large scale cosmological observations (CMB, LSS - linear stage
of structure formation) provide constraints for hot or “very warm”
models (with free-streaming on super-Mpc scales)

m Observations of the low mass and low surface brightness
dwarf satellites do not provide definitive conclusion about the
presence/absence of primordial velocities due to the presence of
strong bias between luminosity and mass functions

m The tool that probes formation of structures at Mpc and sub-Mpc
scales is the data on the Lyman-« forest.
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Power spectrum

Current power spectrum P(k) [(h-! Mpc)?]
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Lyman-a forest and cosm c web

I

-Background -+

quasar
fo- -
.

+ Hydrogen emission
/ from quasar

Intervening -
gas

~— Hydrogen
~— _ ,absorption

| 1 | | I | M ]
4000 2000 6000
Observed Wavelength [Angstroems]

Image: Michael Murphy, Swinburne University of Technology, Melbourne, Australia

Neutral hydrogen in intergalactic medium is a tracer of overall matter
density. Scales 0.3h/Mpc < k < 3h/Mpc
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The Lynman-a net hod i ncl udes

m Astronomical data analysis of quasar spectra
m Astrophysical modeling of hydrogen clouds

m N-body+hydrodynamical simulations of DM clustering at non-linear
stage

m Simultaneous fit of cosmological parameters (2, Qpr,ng, h,05...)
Astrophysical parameters, describing IGM, are not known and
should be fitted as well (another 20+ parameters)

m The data: Lyman-a+ CMB + maybe LSS ... (thousands of data points,
sometimes correlated)

Main challenge: reliable estimate of systematic uncertainties
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Free-stream ng of non- CDM nodel s

m For super-WIMPs primordial velocity spectrum carries the
information about their production

m In general: not an equilibrium primordial spectrum. In many particle
physics models the primordial momentum spectra can be quite
complicated. ..

Mass = 2 keV

8X10-3 1 I 1 I 1 I 1 I 1 I IL: é 1

3 L= 4
x0T T
6x10° —ﬁ/;}ff\ E ig T Velocity spectra of
5x10° 1| = - resonantly produce sterile

2 st PRI 4 neutrinos with the mass 2

mao® L keV, produced at different
pag® 1 lepton asymmetries
1x10°% f-

1
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Free-stream ng of non- CDM nodel s

m For super-WIMPs primordial velocity spectrum carries the
information about their production

m In general: not an equilibrium primordial spectrum. In many particle
physics models the primordial momentum spectra can be quite
complicated. ..

Mass = 2 keV, z=100

[N

: Transfer  functions of
< ! .~ ] resonantly produce sterile
s L LES — . _ neutrinos with the mass 2
e 3 keV, produced at different
I 1 lepton asymmetries
g | ]
= L=25 ------
001 IIIII 1 1 1 1 1 1 III
0.5 1 10 30

k [h/Mpc]
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Free-stream ng of non- CDM nodel s

m For super-WIMPs primordial velocity spectrum carries the
information about their production

m In general: not an equilibrium primordial spectrum. In many particle
physics models the primordial momentum spectra can be quite
complicated. ..

Mass = 2 keV, z=100

[N
1

(P(k)/ PACDM(k))1/2

How to  perform
Lyman- « analysis
for all these models?

0.1

L o o A A
W mnn
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RP sterile neutrino spectra
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Power spectrumfor sterile neutrinos
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Power spectrum for CWDM nodel s
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Lyman- o forest and war m DM

m Previous works put bounds on free-streaming Aps < 100 KpC Viel etal.

(“WDM mass” > 10 keV) 2005-2007;
Seljak et

m Pure warm DM with such free-streaming would not modify visible al.(2006)
substructures

m Revised version of these bounds in CDM+WDM (mixed, CWDM)

models demonstrates that Boyarsky,
— The primordial spectra are not described by free-streaming OR.,
Lesgourgues,
— There exist viable models with the masses as low as 2 keV Viel JCAP &
PRL (2009)
1
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Sterile neutri no DM
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Sterile neutrino DMi1 n the vINSM
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Hal o (sub)structure i n COMWDM uni ver se

work in
progress
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Hal o (sub)structure in CDM uni verse
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Hal o (sub)structure i n COMWDM uni ver se

PRELIMINARY: /Ag-A-2 halo/in CDM and CDM+WDM simulations (Gao, Theuns, Frenk, O.R., ...)

m Simulated CWDM model (right) is fully compatible with the Lyman-«
forest data but provides a structure of Milky way-size halo different
from CDM (left)
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c-Mrelation 1n CADM unil ver se
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Warm admixture decreases concentration of isolated halos at masses
above the free-streaming mass
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Lyman- o« anal ysis 1 n CADM nodel s

m CWDM Ly-a bounds: about 20% of DM can be rather warm

m Primordial velocities at MD epoch can be significant (~ 10 km/sec)
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Lyman- o« anal ysis 1 n CADM nodel s

m CWDM Ly-a bounds: about 20% of DM can be rather warm
m Primordial velocities at MD epoch can be significant (~ 10 km/sec)

m Numerical simulations with velocities? Require high resolution
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Lyman- o« anal ysis 1 n CADM nodel s

m CWDM Ly-a bounds: about 20% of DM can be rather warm
m Primordial velocities at MD epoch can be significant (~ 10 km/sec)

m Numerical simulations with velocities?

Effect of velocities is negligible at scales of interest: Work in
progress

AP(k, z) i ko \° (keV\? [0.27
~ —9. e 1 7
P(k, 2) 5210 (hMpC‘l) (M) Qp (d42)
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Cosnol ogi cal nmagnetic fields

m At temperatures below ~ 80 TeV all left and right-chiral components
have the same amount (although for leptons m < T, the chirality flipping
processes are extremely fast and efficient)

m Generation of lepton asymmetry in the vMSM creates left-right
asymmetry between “active” (v) and sterile (V) neutrinos. As a
result asymmetry between left and right electrons is induced

m The difference of chemical potentials leads to the instability in
Maxwell equations:

Au2t

curl H = ApH + AncE —> FLF x e °

m Lepton asymmetry in the vMSM gives birth to cosmological
magnetic fields

Joyce &
Shaposhnikov
(1998);

Frohlich &
Pedrini (2000)

O.R. work in
progress
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magnhetic fields Iin vol ds?

Evi dence for

Neronov &

Vovk, Science
(2010);

Dolag et al.
(2010);
Tavecchio et
al. (2011)
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Concl usi ons

m Super-WIMP DM candidates are quite attractive both from
theoretical and phenomenological points of view

m Warm DM (thermal relics) with interesting astrophysical and
cosmological applications are ruled out by Lyman-a

m However, more general “warm models” (e.g. CWDM) are quite
possible, sharing advantages of pure WDM models while avoiding
some of their drawbacks

m Sterile neutrino dark matter (as a part of the yMSM model) is a
viable dark matter candidate
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