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Dark Matter in the Universe

Extensive evidence for the presence of dark, non-baryonic matter,
dominating the mass balance of the Universe at scales above 100 pc.

Stellar Disk

Dark Halo

Observed

Gas

M33 rotation curve
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DM as change of gravity laws?
From Ferreira
& Starkman
0911.1212Solar System

Globular Clusters

Dwarf Galaxies

Spiral Galaxies

Clusters of galaxies

Large Scale Structure

Cosmic Expansion 
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Regime of Newtonian
gravity with just the 
ordinary matter

Modifications of
gravity/invisible matter
is required

In this talk I assume that DM is made of particles and the gravity is not modified.
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Universality of DM halos
O.R.+ PRL
2010

work in
progress

 0

 1

 2

 3

 4

 5

 6

 7

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

10
16

D
M

 c
o

lu
m

n
 d

en
si

ty
, 

lg
 (

S
/M

su
n
 p

c-2
)

DM halo mass [Msun]

Clusters of galaxies
Groups of galaxies
Spiral galaxies
Elliptical galaxies
dSphs
Isolated halos, ΛCDM N-body sim.
Subhalos from Aquarius simulation
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M and S - caustics, clusters
M and S - caustics, groups
M - caustics, S - X-rays
M - WL, S - WL
M - WL, S - X-rays

Evidence for DM (rather than MOND)
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Dark matter - a fundamental physics problem

¥ Is evidence for DM convincing?
— yes

¥ Is DM made up of particles? —
most plausible assumption

¥ Is DM baryonic? — no (MACHO
searches; BBN constraints; structure
formation problems)

¥ Is DM made from neutrinos? —
no (neutrino DM would contradict the
observed LSS)

Astrophysics and cosmology are the tools to
learn about the fundamental physics
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DM properties: what can be learned?

¥ Dark matter particle mass
(Tremaine-Gunn bound, . . . )

¥ Dark matter primordial velocities (characterize the way the dark
matter particles were produced and be studied by their imprints on
structure formation)
(CMB+LSS, Lyman-α, halo statistics, . . . )

¥ Dark matter particle interactions (self-interaction, inelastic
scattering, annihilation/decay into ordinary matter, . . . ) and
interaction strength
(search for decay/annihilation products, bullet cluster, . . . )
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DM candidates. What do we expect?

naturalness, fine−tunings, etc.

Leading candidate:

Two major approaches

based on 
THEORETICAL: PHENOMENOLOGICAL:

Mass: 10−1000 GeV Mass:0.5 keV − ...
Searched by PAMELA,
Fermi, laboratory searches...

Searched by ???

WIMP

based on minimalistic approach

a wider framework)
(describe DM puzzle, possibly in

Super−WIMP

Candidates include

Oleg Ruchayskiy W HAT DO WE KNOW ABOUT DM? 6



Super-Weakly Interacting Massive Particles

¥ Phenomenologically we know little about the properties of dark
matter particles

¥ Theoretical bias aside, dark matter particles should generically
have “weaker-than-weak” interaction strength with the Standard
Model sector (super-weakly interacting particles)

¥ Such DM candidates indeed appear in many extensions of the
Standard Model (sterile neutrinos, gravitino, axion, axino, Majoron,. . . )

¥ For super-weakly interacting particles laboratory “direct detection”
methods may be quite challenging =⇒

For Super-WIMPs astrophysics and cosmology may be
our main tools to discover the true nature of dark matter
particles
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Interaction of dark and
ordinary matter

Astrophysical dark matter
search
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Mass of DM particles?

The model-independent lower limit on the mass of fermionic DM Tremaine,
Gunn (1979)

¥ The smaller is the DM mass – the bigger is the number of particles
in an object with some velocity dispersion σ

¥ For fermions there is a maximal phase-space density (degenerate
Fermi gas) ⇒ observed phase-space density restricts number of
fermions

¥ Objects with highest phase-space density – dwarf spheroidal
galaxies – lead to the lower bound on the DM mass:

O.R.+ 2008Mass of DM particle & 400 eV

¥ Active neutrinos with m ∼ 300 eV have primordial phase-space density
Q ∼ Qobs. Neutrino DM abundance Ωνh

2 = mν
94 eV ⇒ Active neutrinos cannot

constitute 100% of DM
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Interactions of super-WIMPs

¥ From a theorist’s point of view DM particles should generically be
decaying (unless some exact global symmetry protects them)

¥ Weakly interacting dark matter should be stable (n → p+e+ν̄e). WIMPs interact
with SM particles via annihilation only. Expected signals: anti-matter excess, flux
from the Galactic center, dwarfs, . . .

¥ Expected decay channels (especially below 1 MeV): ( DM → γ +
ν, γ + γ, . . . ) – to neutrinos and photons

νNs

e± ν

W∓

γ
W∓
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DM column density

¥ Signature of radiative decay: monochromatic line from all dark
matter overdensities. The energy Eγ = 1

2MDMc2

¥ Flux from DM decay:

FDM = Γrad
Eγ

MDM

∫

fov cone

ρDM(~r)

4π| ~DL + ~r|2
d3~r ≈

ΓradΩfov

8π
S

¥ DM column density

S =

∫

Ωfov

ρDM(r)dr

– integral along the line-of-sight, averaged within the instrument’s
field-of-view
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Decay signal from MW-sized galaxy

Moore et al.
2005

Z

ρDM(r)dr
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Annihilation signal from MW-sized galaxy

Moore et al.
2005

Z

ρ
2
DM(r)dr
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How to check DM origin of a line?

¥ Many DM-dominated objects would provide comparable decay
signal. Freedom in choosing observation targets that optimize the
signal-to-noise ratio (with well-controlled astrophysical backgrounds).

¥ Candidate line can be distinguish from astrophysical backgrounds
by studying its surface density and sky distribution .
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All-sky source

¥ DM is an all-sky source
¥ Its variability over the sky can be as low as factor of 3
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SPI: spatial profile of lines
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Search for decaying DM: main challenges

¥ Control of astrophysical
and instrumental background
(of instruments like XMM-Newton,
Chandra, Suzaku, INTEGRAL, . . . )
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object
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Checking DM origin of a line

¥ Dark Matter Search Using Chandra Observations of Willman 1, and Loewenstein &
Kusenko
(Dec’2009)

a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile
Neutrino
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¥ Can the excess in the FeXXVI Ly gamma line from the Galactic Prokhorov &
Silk (Jan’2010)Center provide evidence for 17 keV sterile neutrinos?
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Do we see this line anywhere else?

0 50 100 150
0

100

200

300

400

500

600

SMW Msun/pc2

Fornax

Willman 1

M31

Sculptor

Objects with comparable
expected signal for which
archival data is available

¥ Fornax dSph (XMM)
SF = 54.4M⊙pc−2

¥ Sculptor dSph
(Chandra)
SSc = 140M⊙ pc−2

¥ Andromeda galaxy
(M31) :
SM31 ∼ 100− 600M⊙/pc2

Do we see this 2.5 keV line?
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DM in Andromeda galaxy (2008)

Boyarsky,
O.R. et al.
MNRAS’08
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DM in Andromeda galaxy (2010)

Boyarsky,
O.R. et al.
MNRAS’08

Chemin et al.
0909.3846

Corbelli et al.
0912.4133

Kusenko &
Loewenstein
1001.4055
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Checking for DM line in M31
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How to check DM origin of a line?

¥ Many DM-dominated objects would provide comparable decay
signal. Freedom in choosing observation targets that optimize the
signal-to-noise ratio (with well-controlled astrophysical backgrounds).

¥ Candidate line can be distinguish from astrophysical backgrounds
by studying its surface density and sky distribution .

For decaying dark matter
indirect search becomes

direct!
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Restrictions on life-time of decaying DM

Many groups,
incl. O.R. with
collaborators
2005-2010
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Restrictions on life-time of decaying DM

¥ Is 1025 − 1026 sec a long lifetime? Is it something to be expected?

¥ In what situations an upper bound on the lifetime of DM can exist?
Should we continue to search?

¥ We need some reference model to answer these questions
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Restrictions on life-time of decaying DM

¥ Is 1025 − 1026 sec a long lifetime? Is it something to be expected?

¥ In what situations an upper bound on the lifetime of DM can exist?
Should we continue to search?

¥ We need some reference model to answer these questions

Let us look at a particular
super-WIMP dark matter model
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DM candidates. What do we expect?

naturalness, fine−tunings, etc.

Leading candidate:

Two major approaches

based on 
THEORETICAL: PHENOMENOLOGICAL:

Mass: 10−1000 GeV Mass:0.5 keV − ...
Searched by PAMELA,
Fermi, laboratory searches...

Searched by ???

Leading candidate:

WIMP

based on minimalistic approach

Super−WIMP

(Okkam’s razor)
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Why (and where) we expect new physics?

¥ Neutrino oscillations : mν ∼
√

∆m2
atm ∼ 10−2 eV.

See-saw mechanism mν ∼ v2/Λ, where v = 〈H〉 = 174 GeV and
new scale Λ ∼ 1015 GeV

¥ Dark matter (not a SM particle!)

– particles with weak cross-section will have correct abundance
ΩDM (“WIMP miracle”). New scale ∼ 1 TeV

– Axions. New scale 1010 − 1012 GeV.

¥ Baryon asymmetry of the Universe : what ensured that for each
1010 anti-protons there was 1010 + 1 proton in the early Universe?

– Sakharov conditions: CP-violation; B-number violation; out-of-
equilibrium processes (leptogenesis, phase transitions, etc.)

¥ Fine-tuning problems: CP-problem, hierarchy problem, grand
unification, cosmological constant problem

Oleg Ruchayskiy W HAT DO WE KNOW ABOUT DM? 28



Neutrino oscillations

Experiments on neutrino oscillations determined two mass differences
between neutrino mass states.
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Sterile neutrinos?

Experiments on neutrino oscillations determined two mass differences
between neutrino mass states

The most natural explanation of neutrino
experiments – right-chiral neutrinos in the
Standard Model
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See-saw Lagrangian

Add right-handed neutrinos NI to the Standard Model

Lsee-saw = iN̄I/∂NI +

„

ν − N

mixing matrix

«

| {z }

Dirac mass MD

+

„

N − N

mixing

«

| {z }

Majorana mass MI

¥ Active masses are given via usual see-saw formula :

(mν) = −MDirac
1

MMajorana
MT

Dirac ; MDirac ≪ MMajorana

¥ Neutrino mass matrix – 9 parameters . Dirac+Majorana mass
matrix – 11 (18) parameters for 2 (3) sterile neutrinos. Two sterile
neutrinos are enough to fit the neutrino oscillations data.

Scale of Dirac and Majorana masses is not fixed!
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Some general properties of sterile neutrino

¥ Sterile neutrinos are decaying particles

MI < 1 MeV MI > 1 MeV MI > 150 MeV . . .
NI → ννν̄ NI → νe+e− NI → π±e∓

NI → νγ NI → π0ν

¥ Short lifetime – decay in the early Universe. Can have CP-violating
phases. Leptogenesis? Affect BBN?

¥ Lifetime τ ∝ θ−2
I M−5

I . (Cosmologically) long lifetime – dark matter
candidate?

¥ Mixing angle θI:

θ2
I =

∑

α=e,µ,τ

M2
Dirac,αI

M2
Majorana,I

≪ 1
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The scale of right-handed masses?

“Popular” choices of see-saw parameters

¥ Yukawa couplings FαI ∼ 1, i.e. Dirac masses MD ∼ Mt. Majorana
masses MI ∼ 1015 GeV.

¥ Attractive features:

– Provides a mechanism of baryon asymmetry of the Universe
– Scale of Majorana masses is possibly related to GUT scale

¥ This model does not provide the dark matter particle

¥ Alternative? Choose Majorana masses MI of the order of masses
of other SM fermions and make Yukawa couplings small
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Alternative: νMSM

¥ An alternative choice of parameters: make the masses of new
fermions of the same order as those of other leptons in the SM

¥ Such a model is called Neutrino (extended) Minimal Standard
Model – νMSM for short

The model solves several beyond the Standard Model problems

X . . . explains neutrino oscillations

X . . . matter-antimatter asymmetry of the Universe

X . . . provides a viable dark matter candidate that can be cold, warm
or mixed (cold+warm)

X Provides complete description of the Universe history from
inflation till today
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Choosing parameters of the νMSM
Asaka &
Shaposhnikov
(2005);

Canetti &
Shaposhnikov
(2010)

¥ Two sterile neutrinos with ∆M ≪ M can explain neutrino
oscillations and provide baryogenesis mechanism
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from primordial
synthes of light elements No neutrino oscillations
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Parameters of the third sterile neutrino?

¥ The third sterile neutrino can couple to the SM arbitrarily weakly.
Dark matter candidate? Dodelson &

Widrow (1993)

Shi & Fuller
(1998)

Abazajian et
al. 2001-2005

Asaka,
Shaposhnikov
et al. 2005-. . .

¥ Any DM candidate must be

– Produced in the early Universe and have correct relic abundance

– Be stable or cosmologically long-lived

– Very weakly interacting with electromagnetic radiation (“dark”)

– Allow to explain the observed large scale structure

¥ Sterile neutrino interaction : similar to Standard Model neutrinos
but the interaction strength is suppressed by the mixing angle θ

θ2 =
M2

D

M2
s
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How sterile neutrino DM is produced?

¥ Phenomenologically acceptable values of θ1 are so small, that the
rate of this interaction Γ of sterile neutrino with the primeval plasma
is much slower than the expansion rate (Γ ≪ H)
⇒ Sterile neutrino are never in thermal equilibrium

¥ Simplest scenario: sterile neutrino in the early Universe interact
with the rest of the SM matter via neutrino oscillations: Dodelson &

Widrow’93

Asaka, Laine,
Shaposhnikov’06

ν ν̄

Z0

Ns

e+e−

+

q q′

e∓

W±

Nsν̄

+ · · ·

¥ Production is sharply peaked at

Tmax ≃ 130

(

Ms

keV

)1/3

MeV
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Production through oscillations

¥ Sterile neutrinos have non-equilibrium spectrum of primordial
velocities, roughly proportional to the spectrum of active neutrinos

fs(p) ∝
θ2

exp( p
Tν

) + 1

¥ Their amount less than that of active neutrinos

Ωsh
2 ∝ θ2 Ms

94 eV
recall: SM neutrinos Ωνh

2
=

P

mν

94 eV

¥ Sterile neutrino decay: (N → ννν̄ or N → νγ)

¥ Decay rate: Γ ∝ αG2
F sin2(2θ)M5

s
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Bounds on decaying DM from varios objects

MW (HEAO-1)
Boyarsky, O.R.
et al. 2005

Coma and
Virgo clusters
Boyarsky, O.R.
et al.

Bullet cluster
Boyarsky, O.R.
et al. 2006

LMC+MW(XMM)
Boyarsky, O.R.
et al. 2006

MW Riemer-
Sørensen et
al.; Abazajian
et al.

MW (XMM)
Boyarsky, O.R.
et al. 2007

M31 Watson
et al. 2006;
Boyarsky et al.
2007
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Bounds on sterile neutrino mass

Asaka et al.
(2006)
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Resonant production

¥ The presence of lepton asymmetry in primordial plasma makes
active-sterile mixing much more effective (as in MSW effect). Shi & Fuller

(1998)

Laine &
Shaposhnikov
(2008)

¥ Lepton asymmetry for this to be effective should be large

L6 ≡ 106nνe − nν̄e

s
& 1

(present BBN bound LBBN
6 . 2500) Serpico &

Raffelt (2005)
— resonant production of sterile neutrino

¥ Typically, one expect the lepton asymmetry to be ∼ ηB (sphalerons
equilibrate the two)

¥ In the νMSM CP-violating scatterings/decays of sterile neutrinos
continue to generate lepton asymmetry below the sphaleron scale
thus making it significantly large than ηB Shaposhnikov

(2008)
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Window of parameters of sterile neutrino DM

Laine,
Shaposhnikov’08
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Window of parameters of sterile neutrino DM

Asaka, Laine,
Shaposhnikov’06

Laine,
Shaposhnikov’08
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Window of parameters of sterile neutrino DM

Asaka, Laine,
Shaposhnikov’06

Laine,
Shaposhnikov’08

O.R. and
many others
2005-2010
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Window of parameters of sterile neutrino DM

Asaka, Laine,
Shaposhnikov’06

Laine,
Shaposhnikov’08

O.R. and
many others
2005-2010
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Window of parameters of sterile neutrino DM

Asaka, Laine,
Shaposhnikov’06

Laine,
Shaposhnikov’08

O.R. and
many others
2005-2010
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Restrictions on life-time of decaying DM

¥ Is 1025 − 1026 sec a long lifetime? Is it something to be expected? –
Sterile neutrino DM naturally requires θ ≪ 1 to provide correct DM
abundance for keV (MeV) masses

¥ In what situations an upper bound on the lifetime of DM can exist? Should
we continue to search? – If the same interaction was responsible for
production of DM particles and their decay, than search for decay
signal provides us with valuable restrictions

¥ In the νMSM – can we push further into the interesting region of low
masses (and high lepton asymmetries)?

¥ . . . These particles were produced relativistic (at the time of production
〈p〉 ∼ 300 − 500 MeV mass . 50 keV)
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Probing primordial velocities
of dark matter particles
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Free-streaming and power suppression

¥ Free relativistic particles do not cluster

¥ DM particles erase primordial spectrum of
density perturbations on scales up to the DM
particle horizon – free-streaming length

λco
FS =

∫ t

0

v(t′)dt′

a(t′)

¥ Comoving free-streaming ∼ horizon at the time of non-relativistic
transition tnr (when〈p〉 ∼ m)

¥ Free-streaming horizon determines power spectrum suppression
scale.

¥ For particle with Fermi-Dirac spectrum (thermal relics) this
suppression is strong:

T (k) ≡

√

P (k)

PΛCDM(k)
∝

(

kFS

k

)10

kFS ∼ 0.5
h

Mpc
M

keV
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Influence of primordial velocities
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How to probe primordial velocities?

¥ Primordial velocities affect :

– Power-spectrum of density fluctuations (suppress normalization
at large scale)

– Halo mass function (number of halos of small mass decreases)

– Dark matter density profiles in individual objects

¥ Scales probed by CMB experiments (linear regime of perturbation
growth)

k ≃ ℓ ×
H0

2
=

ℓ

6000

h

Mpc

¥ Is sensitive up to scales k . 0.1 h/ Mpc

¥ Smaller scales? Non-linear stage of structure formation
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Halo substructure in "cold" DM universe

45 × 103 substructures (Aquarius
simulation)

∼ 30 observed substructures within our
Galaxy. M. Geha 2010

Is small number of observed substructures due to dark matter
free-streaming?
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WDM substructure suppression

Thermal relics with mass ∼ 1 keV would erase too many Maccio &
Fontanot
(2009);

Polisensky &
Ricotti (2010)

substructures . Anything “colder” would produce enough structures
to explain observed Milky Way structures
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Luminosity vs. mass function

Macci ò & Fontanot’09

Suppression of number of
structures due to the free-
streaming ?

Koposov et al.’09

Bias between satellite luminosity
function and halo mass function in
ΛCDM?
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Probing primordial velocities

¥ Large scale cosmological observations (CMB, LSS – linear stage
of structure formation) provide constraints for hot or “very warm”
models (with free-streaming on super-Mpc scales)

¥ Observations of the low mass and low surface brightness
dwarf satellites do not provide definitive conclusion about the
presence/absence of primordial velocities due to the presence of
strong bias between luminosity and mass functions

¥ The tool that probes formation of structures at Mpc and sub-Mpc
scales is the data on the Lyman-α forest.

Oleg Ruchayskiy W HAT DO WE KNOW ABOUT DM? 55



Power spectrum
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Lyman-α forest and cosmic web

Image: Michael Murphy, Swinburne University of Technology, Melbourne, Australia

Neutral hydrogen in intergalactic medium is a tracer of overall matter
density. Scales 0.3h/Mpc . k . 3h/Mpc

Oleg Ruchayskiy W HAT DO WE KNOW ABOUT DM? 57



The Lyman-α method includes

¥ Astronomical data analysis of quasar spectra

¥ Astrophysical modeling of hydrogen clouds

¥ N-body+hydrodynamical simulations of DM clustering at non-linear
stage

¥ Simultaneous fit of cosmological parameters (Ωb,ΩM , ns, h, σ8 . . . )
. Astrophysical parameters, describing IGM, are not known and
should be fitted as well (another 20+ parameters)

¥ The data: Lyman-α+ CMB + maybe LSS . . . (thousands of data points,
sometimes correlated)

Main challenge: reliable estimate of systematic uncertainties
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Free-streaming of non-CDM models

¥ For super-WIMPs primordial velocity spectrum carries the
information about their production

¥ In general: not an equilibrium primordial spectrum. In many particle
physics models the primordial momentum spectra can be quite
complicated. . .

0x100

1x10-3

2x10-3

3x10-3

4x10-3

5x10-3

6x10-3

7x10-3

8x10-3

 0  1  2  3  4  5  6  7

q2  f(
q)

q/T

Mass = 2 keV

L=  2
L=  4
L=  6
L=  8

L= 10
L= 12
L= 14
L= 16
L= 25

Velocity spectra of
resonantly produce sterile
neutrinos with the mass 2
keV, produced at different
lepton asymmetries

Oleg Ruchayskiy W HAT DO WE KNOW ABOUT DM? 59



Free-streaming of non-CDM models

¥ For super-WIMPs primordial velocity spectrum carries the
information about their production

¥ In general: not an equilibrium primordial spectrum. In many particle
physics models the primordial momentum spectra can be quite
complicated. . .
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Free-streaming of non-CDM models

¥ For super-WIMPs primordial velocity spectrum carries the
information about their production

¥ In general: not an equilibrium primordial spectrum. In many particle
physics models the primordial momentum spectra can be quite
complicated. . .
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RP sterile neutrino spectra
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Power spectrum for sterile neutrinos
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Power spectrum for CWDM models
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Lyman-α forest and warm DM

¥ Previous works put bounds on free-streaming λFS . 100 kpc Viel et al.
2005-2007;
Seljak et
al.(2006)

(“WDM mass” > 10 keV)

¥ Pure warm DM with such free-streaming would not modify visible
substructures

¥ Revised version of these bounds in CDM+WDM (mixed, CWDM)
models demonstrates that Boyarsky,

O.R.,
Lesgourgues,
Viel JCAP &
PRL (2009)

– The primordial spectra are not described by free-streaming

– There exist viable models with the masses as low as 2 keV
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Sterile neutrino DM

Boyarsky,
O.R.,
Lesgourgues,
Viel PRL
(2009)

Boyarsky,
O.R.,
Shaposhnikov
Ann. Rev.
Nucl. Part.
Sci. (2009)
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Sterile neutrino DM in the νMSM

Boyarsky,
O.R.,
Lesgourgues,
Viel PRL
(2009)

Boyarsky,
O.R.,
Shaposhnikov
Ann. Rev.
Nucl. Part.
Sci. (2009)
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Halo (sub)structure in CDM+WDM universe

work in
progress
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Halo (sub)structure in CDM universe
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Halo (sub)structure in CDM+WDM universe

PRELIMINARY: Aq-A-2 halo in CDM and CDM+WDM simulations (Gao, Theuns, Frenk, O.R., . . . )

¥ Simulated CWDM model (right) is fully compatible with the Lyman-α
forest data but provides a structure of Milky way-size halo different
from CDM (left)
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c-M relation in CWDM universe
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Lyman-α analysis in CWDM models

¥ CWDM Ly-α bounds: about 20% of DM can be rather warm

¥ Primordial velocities at MD epoch can be significant (∼ 10 km/sec)
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Lyman-α analysis in CWDM models

¥ CWDM Ly-α bounds: about 20% of DM can be rather warm

¥ Primordial velocities at MD epoch can be significant (∼ 10 km/sec)

¥ Numerical simulations with velocities? Require high resolution
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Lyman-α analysis in CWDM models

¥ CWDM Ly-α bounds: about 20% of DM can be rather warm

¥ Primordial velocities at MD epoch can be significant (∼ 10 km/sec)

¥ Numerical simulations with velocities?

Effect of velocities is negligible at scales of interest: Work in
progress

∆P (k, z)

P (k, z)
≃ −3.2 × 10−6

(

k

h Mpc−1

)2 (

keV
Ms

)2 (

0.27

ΩM

)

(1 + zi)
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Cosmological magnetic fields

¥ At temperatures below ∼ 80 TeV all left and right-chiral components
have the same amount (although for leptons m ≪ T , the chirality flipping
processes are extremely fast and efficient)

¥ Generation of lepton asymmetry in the νMSM creates left-right
asymmetry between “active” (ν) and sterile (N ) neutrinos. As a
result asymmetry between left and right electrons is induced

¥ The difference of chemical potentials leads to the instability in
Maxwell equations: Joyce &

Shaposhnikov
(1998);

Fröhlich &
Pedrini (2000);

O.R. work in
progress

curl ~H = ∆µ ~H + 4πσ ~E =⇒ ~H+ ∝ e
∆µ2t

σ

¥ Lepton asymmetry in the νMSM gives birth to cosmological
magnetic fields
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Evidence for magnetic fields in voids?

Neronov &
Vovk, Science
(2010);

Dolag et al.
(2010);

Tavecchio et
al. (2011)
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Conclusions

¥ Super-WIMP DM candidates are quite attractive both from
theoretical and phenomenological points of view

¥ Warm DM (thermal relics) with interesting astrophysical and
cosmological applications are ruled out by Lyman-α

¥ However, more general “warm models” (e.g. CWDM) are quite
possible, sharing advantages of pure WDM models while avoiding
some of their drawbacks

¥ Sterile neutrino dark matter (as a part of the νMSM model) is a
viable dark matter candidate
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