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The Universe was not always as cold
and dark as it is today — there are a
host of landmark measurements that
track the history of the universe

None of these measurements, however,

reach back as far in time as ~1 second
after the Big Bang

— At ~1 second the hot, expanding
universe is believed to have become
transparent to neutrinos

In the present universe, relic neutrinos
are predicted to be at a temperature of
1.9K (1.7x104 eV) and to have an
average number density of ~56/cm? per
lepton flavor
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Measuring P(k)
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Some notable caveats: k (h/Mpc)
Bounds depend on cosmology assumptions, such as the dark energy contribution to the
equation of state. One can also have a delay in the matter-radiation transition from dark
radiation (the number of relativistic degree of freedoms above N=3.04).
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Produce ~1M Z bosons at
an e*e” collider

Scan the line shape in
center-of-mass energy

Count the number of
hadronic Z decays

Compute the total width from
visible decays and add an
Invisible width scaled by the
SM couplings to neutrinos
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There may be heavier neutrinos
in the mass range 1eV-10keV.
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The sterile component cannot have
weak interactions from Z boson data.
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a paper by Steven Weinberg in 1962 [Phys. Rev. 128:3, 1457]

— Look for relic neutrino capture on tritium by measuring electrons at
or above the endpoint spectrum of tritium beta-decay

P - *
What do we know? ve t Az — e + Az,
Gap (2m) constrained Te=1,4+2m, + ¢

to < ~0.6eV
from Cosmology\ A
(some electron flavor \
expected with 2m>0.1eV Ny @ @m Qim T

from neutrino oscillations) | |

Figure 1: Emitted electron density of states vs kinetic energy for neutrino
capture on beta decaying nuclei. The spike at () + 2m is the CNB signal
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JGAP 0706 (2007)015: hep=ph/0703075 by Cocto, Mangano, Méssifa




Tritium experiments typically use diatomic tritium T2
where the bond strength is approximately 4eV.
But what happens when one T atom decays?

Answer: The maximum He? recoil energy is ~3eV.
He3 stays bound to the remaining T to form a T-He?3

molecule — and can fall into a number of closely
spaced rotational and vibrational excited states

Quantum Mechanics tells us that the outgoing
electron energy depends on the change in the
blndlng energy of T? to (THe3)
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T-T > T-He?
Level Diagram
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HeT) + e Y / E(T)=13.60eV
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* In the hunt for alternative energies, ' {\
kk\]\&f\r‘*\\, \
there has been a great focus on the AR A
development of Hydrogen fuel cells u_;;vkv&,
— Here the advantage is to store hydrogen B& kw\lwk
in a solid form (with 6%wt) at room A 'WW']
temperature, but with a weak enough ‘ ﬁ‘ﬁﬁ
binding that the hydrogen can be “ s \”
released by heating or some other means L _bnm '}

..

.

A Single-Walled Carbon Nanotube (SWNT) has the
potential of having a hydrogen binding energy less than 3eV,
and possibly as low as 1eV or less.
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 1st proposal of the PTOLEMY project is to use
the setup to measure hydrogen bond strength

differences using tritium beta decay energy
measurements

New technique:
May help accelerate
Hydrogen fuel cell
research




The largest and nearly insurmountable problem
of relic neutrino detection is to provide a large
enough surface area to hold 100 grams of
weakly bound atomic tritium

— The trajectory of the outgoing electrons from tritium

decay have to have a clear vacuum path to the
calorimeter (up to one or two atomic layers of carbon)

— Need approximately 10° m? of expose surface area,
that's ~200 football fields

— Cannot be achieve with a flat planar surface — needs
nanotechnology to solve
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The charging time for
Single-Walled Carbon
Nanotubes (SWNT) is
approximately 4 hours
at 10MPa.

Monitoring:

Graphene transitions
from a conductor to an
Insulator as tritium is
absorbed.

He3 ions can be

Hydrogen adsorbed (wil.94)
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DC ExB fields applied in
a 20 cm x 50 cm st. steel

NRERUELCUREEE chamber with ceramic side
Insulator walls.

N
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Coils

Plasma cathode: 2 MHz,
50-200 W Ferromagnetic ICP

Diagnostics:

Langmuir probes, emissive
probes, optical emission and
laser diagnostics of plasma

Si wafer immersed
in the plasma source

Raitses et al., DOE PSC Meeting, 2013
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« Target mass: 100 grams of tritium (2 x 10%° nuclei)
« Capture cross section * (v/c) ~ 1044 cm (flat up to 10 keV)

+ Rate ~ (56 electron neutrinos/cm?)(2 x 102 nuclei)(10-44 cm-)
(3 x 107° cm/s)(3 x107s) ~ 10 events/year

Gravitational clumping could
potentially increase the local
number of relic neutrinos.

For low masses ~0.15eV, the
local enhancement is ~x1.5
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Low Field
Region
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Cryogenic

Tritium Storage Cell Sl

Surface Deposition
( P ) A Long High Uniformity ~ (0~0.15eV)
/ High Field Solenoid ~ |~50-150ev  Solenoid (~2T) \

\ below .
Endpoint E,+30kV 0-1keV =

E-18.4keV

RF Tracking
(38-46 GHz)
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— ANL Group (Clarence Chang) estimates ~0.55eV at 1keV
and ~0.15eV at 0.1keV operating at 70-100mK

Therrpometer 100eV electron can be
, = 1\ c L/topped with very small C
(T
o ENTST
2 Cj’ < (example) SPIDER lIsland TES
C G Thermal -
Heat Conductance Time
Capacity

\

~ 100 mK cold bath (refrigerator)

Bandwidths of ~1 MHz to record ~10kHz
of electrons hitting the individual sensors
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Nb Leads

Si

G set by e-ph coupling o< T°
AE=0.15eV @ 100 eV

Operating at 70-100mK

B field “feed through”
Multi-layer
superconducting
shield (ALD)

Clarence Chang




I\/Ilcrowave readout Massive SQUID I\/Iult|plexer

Clarence Chang

CPW transmission line
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va-wave CPW
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« Change in flux changes SQUID inductance

- at 1-10 GHz, can support ~1 MHz of bandwidth with
~1000 channels per line

- Originally developed for CMB measurements, recently

demonstrated successful operation with X-ray u-cals Kent lrwin




SN2

* Cryogenic microcalorimeters promise to greatly
Improve many research areas with vastly higher
precision and data collection speed
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* RF tracking and time-of-flight

— Thread electron trajectories (magnetic field guide lines)
through a waveguide with ~wide bandwidth (few x10-°) to
identify cyclotron RF signal in transit times of order 0.2usec

» Currently using WMAP (Norm Jarosik) HEMT amplifiers with 1K/GHz
noise and operating in the Q-Band range 38-46 GHz (~1.9T)

 Accelerate electrons to E;+30keV in antenna region to increase
electron cyclotron radiation — record in long uniform field (few x10-°)




Readout Orthogonal to
Electron Trajectory

Q-Band (38-46 GHz)
Magic Tee Waveguide
Junction

Q-Band (38-46 GHz)
WMAP Amplifier




« MAC-E filter cutoff of 10-2 to 10-3 precision on electron energy
— Energy window below endpoint needed for 2 acceptance ~150eV
— Voltage of filter cut-off accurate to ~1eV
— Planar cell aperture of ~30cm? within 3.2T bore
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WARNING

STRONG MAGNETIC

—

PTQLEM? prototype at PPPL — January 2013
(large vac-tank ready for install)
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* For studying antenna data, a windowless APD is used to tag
the tritium decay from a tritium disk source
— Trigger on APD and record antenna (50 GHz mixed down to ~10 MHz

bandwidth)

Final APD: Tritium Source
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 PPPL already “Hot spots” of TFTR carbon tile indicate tritium
produced tritium-
graphene samples in
the 90's in TFTR

— We are try to look at

these are have started
from Raman scattering
analysis at PRISM
* \We hope to get future
sources from SRNL




« Take a biological sample from centuries ago
exposed to atmospheric carbon

—> Now

With a half-life of ~5700 years
levels of C' of 10-12 in 2x102° nuclei

will produce 100 Hz of decays

In a window of 0.5 eV (Q=156keV), biological levels of C'* are
four orders of magnitude too much radiation for a relic neutrino
experiment with a graphene substrate. Fortunately, underground
carbon sources have 10-18 levels of C'4 (achieved in Borexino).
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« Uses Iarge uniform geometry to achieve ~0.2eV cut-off
sensitivity — “Cut and Count” experiment

— PTOLEMY Goal: 10mHz - sub-uHz Background Rate

—
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« PTOLEMY will operate with:
Completed MAC-E filter (1% cut-off)
Collect tritium spectra in 50-150eV of endpoint
100 micrograms (1 Cu) of tritium with 1m? area (~300 layer cell)
0.15eV energy resolution at 100eV
Demonstrate RF-tagged electron identification

Measure tritium cell systematics to sub-eV
* Physics
— 1stdirect constraint on relic neutrino density (10 above nominal)

— Comparable resolution performance on neutrino mass
(systematics will be measured)

— Early universe relic sterile neutrino limits (up to ~10keV)




Streamlines and positions of B field minima
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* Are there experimental outcomes that are inconsistent with Big
Bang cosmology? Yes!

— Too many cold neutrinos with no visible mass separation from the end-
point (no galactic clumping factor) would contradict the initial conditions
of Big Bang nucleosynthesis (present day H, D, He, Li abundances)

 Are there outcomes that are inconsistent with the Standard

Model of particle physics? Yes!

— No neutrino detection (exclusion of the relic neutrino density below
prediction) could mean that neutrinos have a finite lifetime

* Are there possibilities for discovering new physics? Yes!

— Alternative dark matter candidates such as keV sterile neutrinos may
have a non-zero electron flavor content and would appear as a mass
peak above the end-point
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Is there a pOSS|b|I|ty to make long-term contributions to the
understanding of the Universe?

— Absolutely! We believe that we live in a sea of 14 billion year old
neutrinos all around us (the oldest relics in the Universe) — is it true?

— When one opens a new frontier of exploration, there is no telling what
will be found and learned




 Princeton University committed $1.2M in cost-
sharing for January 2014 NSF MRI submission

— PTOLEMY won internal Princeton competition (top 3)
— Intermediate funding for next 9 months for He3 system

* Important R&D still to be done on the tritium

storage cell, the detector, and background levels
 PPPL prototype is an excellent test bed for
validating the technologies for a 100g PTOLEMY

— We will continue to develop the high mass capacity
system for the next phase of the experiment in 2-3 years




Development of a Relic Neutrino Detection Experiment at PTOLEMY:
Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield
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* Previous solid sources were limited at
approximately 100 atomic layers from
electron scattering

— With an ExB source, if we consider individual
graphene nanotubes and a 100:1 ratio of

source size to separation — then we could
have 1 million nanotubes strung with 1 micron
spacing over a distance of 1 meter. With a 1
m”2 total transverse area of tubes per layer,
we would achieved 100 grams of tritium




o Sub-K tritium

— Insulator/conductor transition using flux-lock
loop and SQUID readout

— Potential to drift He3 ions in the opposite path

for coincident collection (or to sell them!)

— New tritium storage tank — could liberate
atoms either by heating or with RF and the
free ions could be collected to act as a source
cell for an injector or a controlled reaction
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« 1 SNU = 1 neutrino interaction per second for 1036 target nuclei
« 100 grams of tritium (2.2 x 10%° nuclei)
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« PTOLEMY ~3618 SNU with 100g (102° nuclei) 2.5 evts/year
« Gallex 70 SNU with 30 tons (102° nuclei) 1200 evts/year

« Homestake (Chlorine) 8 SNU with 600 tons (103" nuclei)
2500 evts/year

Cross Sections

Hard to compete with
Tritium for sub-MeV
neutrino energies

| 1 | | | | |
30 50 70 100 150200 300
Neutrino Energy (MeV)
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Using v capture...

_ _ _ P~ 0.4x10¢
If Dark Matter is made by sterile neutrino = Ps M[keV]

Looking beyond the beta decay endpoint energy (background free region)

100 g of Tritium for 1 year
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* High precision on endpoint
— Cryogenic calorimetry energy resolution
— Goal: 0.1eV resolution

« Signal/Background suppression
— RF tracking and time-of-flight system
— Goal: sub-microHertz background rates above endpoint

* High mass, high resolution tritium target
— Surface deposition (tenuously held) on conductor in vacuum
— Goal: for CNB: maintains 0.1eV signal features with high efficiency
— For sterile nu search: maintains 10eV signal features w/ high eff.

« Scalable mass/area of tritium source and detector
— Goal: relic neutrino detection at 100g
— Sterlle neutrlno (w/ % electron flavor) at ~1g
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* In order to avoid magnetic bounce, electrons must be

accelerated back up in going from mid-plane to detector
 Different trajectories have different cut-off precisions
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High precision (0.1eV) electron gun
— Off-axis directionality needed for RF antenna calibration

— Investigating possibility of a single or multiple high precision guns
situated outside of the magnetic field of the tritium target plate with a
“switch yard” of input spigots to provide in situ calibration peaks for
every calorimeter channel and electron trajectory

Vacuum studied with residual gas analyzer (RGA)

Several possibilities for background estimation
— sideband data-driven background estimation below MAC-E filter cutoff
— out-of-time tracking-calorimeter coincidence
— (vacuum-)scattered electron trajectory analysis
— varying source strength tiles (null sources)

NMR calibration for magnetic field uniformity in RF tracker




High Field ~Low Field

Source Solenoid ~ (~0-003T) Long Uniform

“switchyard” (=0.3T) \

Energy resolutior’i']{liin‘éf,a’fity for calorimeter
Angular confrql’ for RF tracker
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. TV =1.9K=~1.7 x 10* eV is small compared to
at least 2 of the neutrino mass eigenstates

The local neutrino number density
(with electron flavor content) may be
enhanced in clusters by factors that
typically range from 1-100 depending

on the neutrino mass(es)

I IIIIIIII

This would translate directly in 1-100
times more CNB signal events.
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