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Why study non-Gaussianity (NG)?

1. NG presents a window to the very early universe. For 
example, NG can distinguish between physically distinct models of 
inflation.

2. Conveniently, NG can be constrained/measured using 
CMB anisotropy maps and LSS. In particular, there is a rich 
set of observable quantities that are sensitive to primordial NG. 



10 years of Primordial non-Gaussianity

2000 2002 2004 2006 2008 2010
0

50

100

150

200

COBE
(≪1σ)

WMAP1
(0.8 σ)

WMAP3
(0.7 σ)

WMAP5
(1.7 σ)

Yadav & Wandelt (2.8σ ?)

Dalal et al.
?

Large-Scale Structure

CMB

Inflation / Theory

non-primordial NG

# of articles with 
“Non-Gaussian”

in the title 
on the ADS data base

WMAP7
(1.5 σ)

Planck

Thursday, September 15, 2011

Non-Gaussianity papers
in the past 10 years

Produced by Emiliano Sefusatti

2000 2002 2004 2006 2008 2010 2012
0

20

40

60

80

100

120

140

COBE
WMAP1

WMAP3

WMAP5

WMAP7 WMAP9

Planck

Dalal et al



Initial conditions in the universe

 Nearly scale-invariant spectrum of density perturbations

 Background of gravity waves

 (Very nearly) gaussian initial conditions:

Generic inflationary predictions:Statistical Isotropy:

Gaussianity:
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Standard Inflation, with...

1. a single scalar field

2. the canonical kinetic term

3. always slow rolls

4. in Bunch-Davies vacuum

5. in Einstein gravity

produces unobservable NG

Therefore, measurement of nonzero NG would
point to a violation of one of the assumptions above

e.g. Maldacena 2003, X. Chen, Adv. Astronomy, 2010;  Komatsu et al, arXiv:0902.4759



Salopek & Bond 1990;  Verde et al 2000; Komatsu & Spergel 2001; Maldacena 2003

Φ = ΦG + fNL

�
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�Commonly used “local” model of NG

T1
T2

T3

B(k1, k2, k3) ∼ fNL [P (k1)P (k2) + perm.]
Then the 3-point function is related to fNL via (in k-space)

NG from 3-point correlation function



Recall: power spectrum

δ(�r) =

�
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Define Fourier transform 
of density fluctuation:

Then the power spectrum P(k) is defined via

Sometimes it’s nice to work in harmonic space
a�m = 4π(−i)�
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The bispectrum: 
similar, but  for 3-pt function

Fourier space:

Harmonic space:

�a�1m1a�2m2a�3m3� ≡ Bm1m2m3
�1�2�3

and the angle-averaged bispectrum is
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fNL= -5000

fNL= +5000 fNL= +500

fNL= -500
fNL= 0

Using publicly available NG maps by Elsner & Wandelt



P (δT/T )

δT/T

Current upper bound on NG is
~1000 times smaller than this:



Higher Deriv.
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Figure 3: Plot of the function F (1, x2, x3) x2
2x

2
3 for non-Gaussianities generated by higher derivative

interactions (12) and in the DBI model of inflation [20, 21]. The figure is normalized to have value
1 for equilateral configurations x2 = x3 = 1 and set to zero outside the region 1− x2 ≤ x3 ≤ x2.

Ghost inflation
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Figure 4: Plot of the function F (1, x2, x3) x2
2x

2
3 for ghost inflation (13). The figure is normalized

to have value 1 for equilateral configurations x2 = x3 = 1 and set to zero outside the region
1 − x2 ≤ x3 ≤ x2.

We see that the fudge factor is proportional to the cosine between the distributions. This suppression

9

3-pt correlation function of CMB anisotropy 
⇒ direct window into inflation

k1 k2

k3

k1 k2

k3

“local”
(eg. multi-field)

“equilateral”
(eg. higher-derivative
action; interactions)

Babich, Creminelli & Zaldarriaga 2004

Local
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Figure 1: Plot of the function F (1, x2, x3) x2
2x

2
3 for the local distribution (6). The figure is

normalized to have value 1 for equilateral configurations x2 = x3 = 1 and set to zero outside the
region 1− x2 ≤ x3 ≤ x2.

Slow roll
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Figure 2: Plot of the function F (1, x2, x3) x2
2x

2
3 for the usual slow-roll inflation (9) with ε = η =

1/30. The figure is normalized to have value 1 for equilateral configurations x2 = x3 = 1 and set to
zero outside the region 1− x2 ≤ x3 ≤ x2.

It is interesting to rewrite the definition of f(F ) as

f(F ) =
F · Flocal

Flocal · Flocal
= cos(F,Flocal)

(

F · F
Flocal · Flocal

)1/2

. (21)

8

e.g. Luo & Schramm 1993



Brief history of NG measurements: 1990’s

Early 1990s;  COBE:  Gaussian CMB sky (Kogut et al 1996)
                                                                                            |fNL| ≲ 3000 (Komatsu 2002)

1998; COBE: claim of NG at l=16 equilateral bispectrum
(Ferreira, Magueijo & Gorski 1998)

but explained by a known systematic effect!
(Banday, Zaroubi & Gorski 1999)

(and anyway isn’t unexpected given all
bispectrum configurations you can measure;
Komatsu 2002)
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Brief history of NG measurements: 2000’s

Pre-WMAP CMB: all is gaussian (e.g. MAXIMA; Wu et al 2001)

WMAP pre-2008: all is gaussian 
(Komatsu et al. 2003; Creminelli, Senatore, Zaldarriaga & Tegmark 2007)

-36 < fNL < 100   (95% CL)

Dec 2007, claim of NG in WMAP
(Yadav & Wandelt arXiv:0712.1148)

27 < fNL < 147   (95% CL)

The generalized estimator is given by

 f̂ NL ! Ŝprim " Ŝlinearprim

N
; (3)

where N is the normalization factor and Ŝprim and Ŝlinearprim are
the so called trilinear and linear term of the estimator,
respectively. The trilinear term captures the bispectrum
information about fNL while the linear term has vanishing
expectation and is designed to reduce the scatter in the
trilinear term induced by the foreground mask and
WMAP’s anisotropic scan strategy.

Although our estimator [17] can utilize both the tem-
perature and E-polarization information of the cosmic
microwave background (CMB) to constrain primordial
non-Gaussianity, we have used only temperature informa-
tion of the WMAP 3-year data. For the analysis we used
various combinations of 8 channels of WMAP 3-year raw
data: Q1, Q2, V1, V2, W1, W2, W3, and W4. For all the
simulations we used the WMAP 3-year maps in HEALPIX
format with Npix ! 3 145 728 pixels. We focused on the V
and W bands, which are the main WMAP CMB science
channels suffering least from foreground contamination.
We also applied our estimator to Q and Q" V "W to
assess sensitivity to foregrounds.

We performed Monte Carlo simulations to assess the
statistical significance and errors of our fNL estimates. For
example for the Q" V "W coadded simulated map, we
first simulated 8 Gaussian maps using the noise and beam
properties of the corresponding 8 channels. Then a single
map was obtained by pixelwise averaging of these 8 maps.
The same procedure was followed to obtain simulated
coadded maps of the other channel combinations. The
SAB and SBB weight maps for the linear estimator [15]
were obtained using 800 Monte Carlo simulations that
include the WMAP noise and foreground masks.

Figure 1 shows the measured value of the nonlinear
coupling parameter fNL for 4 combinations of coadded
frequency channels (Q" V "W, V "W, V, and W) as a
function of maximum multipole ‘max used in the analysis.
All the analyses in this figure use the Kp0 mask. The figure
shows the 95% C.L. error bars derived from Monte Carlo
simulations.

For the coadded V "W map there is evidence of pri-
mordial non-Gaussianity at more than 95% C.L. for all
‘max > 450. For the coadded Q" V "W map there is a
detection of primordial non-Gaussianity at more than 95%
C.L. for all ‘max > 500. Residual suboptimality of our
estimator results in a larger error bar for the Q" V "W
combination compared to the V "W combination.

Using the coadded V "W channel with ‘max ! 750, we
find

 27< fNL < 147 #at 95%C:L:$: (4)

This rules out the null hypothesis of Gaussian primordial
perturbations at 2:8!.

Our analysis provides the most information to date on
the primordial non-Gaussianity of the local type. For the
sake of comparison with the previous best result in the
literature ( % 36< fNL < 100, for the coadded Q" V "
W map at the 2! level for ‘max & 400 [16,18,19]), our
constraints using the coadded Q" V "W map truncated
at ‘max ! 400 are: %20:84< fNL < 83:4 (at 95% C.L.).
We may conclude that the additional information uncov-
ered by the Yadav et al. estimator [17] at ‘ > 400 is
important for our result. As calculated by Creminelli
et al. [20] and verified in simulation by [21], there is a
contribution to the estimator variance due to nonzero fNL.
This widens the confidence interval of the estimator by 3%.
It does not, however, modify the significance of our rejec-
tion of the Gaussian null hypothesis.

Interpretation.—A detection of non-Gaussianity has
profound implications on our understanding of the early
Universe. We will now argue based on an extensive suite of
null tests and theoretical modeling that our results are not
due to any known systematic error, foregrounds, or sec-
ondary anisotropy.

Since our estimator is based on three-point correlations,
any mis-specification of the WMAP noise model would not
bias our estimator, since Gaussian instrument noise has a
vanishing three-point function. Similarly, if the CMB were
Gaussian, asymmetric beams cannot create non-Gauss-
ianity. Beam far-side lobes can produce a small level of
smooth foreground contamination at high galactic latitude
[22] at ‘ ' 10. This effect has been corrected in the 3-year
maps [23]. Since our signal is not frequency dependent this
is clearly not a dominant effect. Even so, we checked for
this or any other large scale anomaly by deleting modes
with ‘ ' 20 from our analysis. We find that our estimate
increases to fNL ! 135( 96 at (95% C.L.), leaving the
statistical significance of our signal at a similar level.

FIG. 1 (color). We show the measured value of the nonlinear
coupling parameter fNL using WMAP 3-year raw maps, and the
corresponding 95% error bars derived from the Gaussian simu-
lations. For this analysis the WMAP Kp0 mask was used. The
analysis is done for 4 combinations of the frequency channels:
coadded Q" V "W, coadded V "W, V, and W.

PRL 100, 181301 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
9 MAY 2008
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Komatsu et al. 2010

28 Komatsu et al.

TABLE 11
Estimatesa and the corresponding 68% intervals of the primordial

non-Gaussianity parameters (f local
NL , fequil

NL , forthog
NL ) and the point

source bispectrum amplitude, bsrc (in units of 10−5 µK3 sr2), from the
WMAP 7-year temperature maps

Band Foregroundb f local
NL fequil

NL forthog
NL bsrc

V+W Raw 59 ± 21 33 ± 140 −199 ± 104 N/A
V+W Clean 42 ± 21 29 ± 140 −198 ± 104 N/A
V+W Marg.c 32 ± 21 26 ± 140 −202 ± 104 −0.08 ± 0.12
V Marg. 43 ± 24 64 ± 150 −98 ± 115 0.32 ± 0.23
W Marg. 39 ± 24 36 ± 154 −257 ± 117 −0.13 ± 0.19

aThe values quoted for “V+W” and “Marg.” are our best estimates from
the WMAP 7-year data. In all cases, the full-resolution temperature maps at
HEALPix Nside = 1024 are used.
bIn all cases, the KQ75y7 mask is used.
c“Marg.” means that the foreground templates (synchrotron, free-free, and

dust) have been marginalized over. When the foreground templates are
marginalized over, the raw and clean maps yield the same fNL values.

We use the V- and W-band maps at the HEALPix res-
olution Nside = 1024. As the optimal estimator weights
the data optimally at all multipoles, we no longer need
to choose the maximum multipole used in the analysis,
i.e., we use all the data. We use both the raw maps (be-
fore cleaning foreground) and foreground-reduced (clean)
maps to quantify the foreground contamination of fNL
parameters. For all cases, we find the best limits on fNL

parameters by combining the V- and W-band maps, and
marginalizing over the synchrotron, free-free, and dust
foreground templates (Gold et al. 2010). As for the mask,
we always use the KQ75y7 mask (Gold et al. 2010).

In Table 11, we summarize our results:

1. Local form results. The 7-year best estimate of
f local

NL is

f local
NL = 32 ± 21 (68% CL).

The 95% limit is −10 < f local
NL < 74. When

the raw maps are used, we find f local
NL = 59 ±

21 (68% CL). When the clean maps are used, but
foreground templates are not marginalized over,
we find f local

NL = 42 ± 21 (68% CL). These results
(in particular the clean-map versus the foreground
marginalized) indicate that the foreground emis-
sion makes a difference at the level of ∆f local

NL ∼ 10.
We find that the V+W result is lower than the
V-band or W-band results. This is possible, as
the V+W result contains contributions from the
cross-correlations of V and W such as 〈VVW〉 and
〈VWW〉.

2. Equilateral form results. The 7-year best esti-
mate of f equil

NL is

f equil
NL = 26 ± 140 (68% CL).

The 95% limit is −214 < f equil
NL < 266. For f equil

NL ,
the foreground marginalization does not shift the
central values very much, ∆f local

NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202 ± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆f local
NL =

−4.

As for the point-source bispectrum, we do not detect
bsrc in V, W, or V+W. In Komatsu et al. (2009b), we
estimated that the residual sources could bias f local

NL by
a small positive amount, and applied corrections using
Monte Carlo simulations. In this paper, we do not at-
tempt to make such corrections, but we note that sources
could give ∆f local

NL ∼ 2 (note that the simulations used by
Komatsu et al. (2009b) likely overestimated the effect of
sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009b), extrapolating
the previous results is not trivial. Source corrections to
f equil

NL and forthog
NL could be larger (Komatsu et al. 2009b),

but we have not estimated the magnitude of the effect
for the 7-year data.

We used the linear perturbation theory to calculate
the angular bispectrum of primordial non-Gaussianity
(Komatsu & Spergel 2001). Second-order effects (Pyne
& Carroll 1996; Mollerach & Matarrese 1997; Bartolo
et al. 2006, 2007; Pitrou 2009a,b) are expected to give
f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al. 2009a,b;
Khatri & Wandelt 2009a,b; Boubekeur et al. 2009; Pitrou
et al. 2008) and are negligible given the noise level of the
WMAP 7-year data.

Among various sources of secondary non-Gaussianities
which might contaminate measurements of primordial
non-Gaussianity (in particular f local

NL ), a coupling be-
tween the ISW effect and the weak gravitational lensing
is the most dominant source of confusion for f local

NL (Gold-
berg & Spergel 1999; Serra & Cooray 2008; Hanson et al.
2009; Mangilli & Verde 2009). While this contribution
is expected to be detectable and bias the measurement
of f local

NL for Planck, it is expected to be negligible for
WMAP: using the method of Hanson et al. (2009), we
estimate that the expected signal-to-noise ratio of this
term in the WMAP 7-year data is about 0.8. We also
estimate that this term can give f local

NL a potential posi-
tive bias of ∆f local

NL ∼ 2.7. Calabrese et al. (2009) used

Constraints from WMAP



Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Table 9. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned
and modal estimators from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps. Both independent single-shape results and
results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68%
CL .

Independent ISW-lensing subtracted
KSW Binned Modal KSW Binned Modal

SMICA
Local . . . . . . . . . . . . . . . . 9.8 ± 5.8 9.2 ± 5.9 8.3 ± 5.9 . . . . . 2.7 ± 5.8 2.2 ± 5.9 1.6 ± 6.0
Equilateral . . . . . . . . . . . . −37 ± 75 −20 ± 73 −20 ± 77 . . . . . −42 ± 75 −25 ± 73 −20 ± 77
Orthogonal . . . . . . . . . . . . −46 ± 39 −39 ± 41 −36 ± 41 . . . . . −25 ± 39 −17 ± 41 −14 ± 42

NILC
Local . . . . . . . . . . . . . . . . 11.6 ± 5.8 10.5 ± 5.8 9.4 ± 5.9 . . . . . 4.5 ± 5.8 3.6 ± 5.8 2.7 ± 6.0
Equilateral . . . . . . . . . . . . −41 ± 76 −31 ± 73 −20 ± 76 . . . . . −48 ± 76 −38 ± 73 −20 ± 78
Orthogonal . . . . . . . . . . . . −74 ± 40 −62 ± 41 −60 ± 40 . . . . . −53 ± 40 −41 ± 41 −37 ± 43

SEVEM
Local . . . . . . . . . . . . . . . . 10.5 ± 5.9 10.1 ± 6.2 9.4 ± 6.0 . . . . . 3.4 ± 5.9 3.2 ± 6.2 2.6 ± 6.0
Equilateral . . . . . . . . . . . . −32 ± 76 −21 ± 73 −13 ± 77 . . . . . −36 ± 76 −25 ± 73 −13 ± 78
Orthogonal . . . . . . . . . . . . −34 ± 40 −30 ± 42 −24 ± 42 . . . . . −14 ± 40 −9 ± 42 −2 ± 42

C-R
Local . . . . . . . . . . . . . . . . 12.4 ± 6.0 11.3 ± 5.9 10.9 ± 5.9 . . . . . 6.4 ± 6.0 5.5 ± 5.9 5.1 ± 5.9
Equilateral . . . . . . . . . . . . −60 ± 79 −52 ± 74 −33 ± 78 . . . . . −62 ± 79 −55 ± 74 −32 ± 78
Orthogonal . . . . . . . . . . . . −76 ± 42 −60 ± 42 −63 ± 42 . . . . . −57 ± 42 −41 ± 42 −42 ± 42

squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coefficient r ∼
−0.5 between the local and orthogonal CMB templates), while
it is very small in the equilateral limit. The values of the ISW-
lensing bias we subtract, summarized in Table 1, are calculated
assuming the Planck best-fit cosmological model as our fidu-
cial model. The same fiducial parameters were of course consis-
tently used to compute the theoretical bispectrum templates and
the estimator normalization. Regarding the point source contam-
ination, we detect a Poissonian bispectrum at high significance
in the SMICA map, see Sect. 5.3. However, marginalizing over
point sources still carries a nearly negligible impact on the final
primordial fNL results, because the Poisson bispectrum template
has very small correlations with all the other shapes.

In light of the discussion at the beginning of this section, we
take the numbers from the KSW SMICA analysis in Table 8 as the

Table 10. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the subopti-
mal wavelet estimator from the SMICA foreground-cleaned map.
Both independent single-shape results and results marginalized
over the point source bispectrum and with the ISW-lensing bias
subtracted are reported; error bars are 68% CL. As explained in
the text, our current wavelets pipeline performs slightly worse in
terms of error bars and correlation to primordial templates than
the other bispectrum estimators, but it still provides a useful in-
dependent cross-check of other techniques.

Independent ISW-lensing subtracted
Wavelets Wavelets

SMICA
Local . . . . . . . . . 10 ± 8.5 0.9 ± 8.5
Equilateral . . . . . 89 ± 84 90 ± 84
Orthogonal . . . . . −73 ± 52 −45 ± 52

final local, equilateral and orthogonal fNL constraints for the cur-
rent Planck data release. These results clearly show that no evi-
dence of NG of the local, equilateral or orthogonal type is found
in the data. After ISW-lensing subtraction, all fNL for the three
primordial shapes are consistent with 0 at 68% CL. Note that
these numbers have been cross-checked using two completely
independent KSW pipelines, one of which is an extension to
Planck resolution of the pipeline used for the WMAP analysis
(Bennett et al. 2012).

Unlike other methods, the KSW technique is not designed
to provide a reconstruction of the full bispectrum of the data.
However, the related skew-C� statistic described in Sect. 3.2.2
allows, for each given shape, visualization and study of the con-
tribution to the measured fNL from separate �-bins. This is a
useful tool to study potential spurious NG contamination in the
data. We show for the SMICA map in Fig. 5 the measured skew-
C� spectrum for optimal detection of primordial local, equilat-
eral and orthogonal NG, along with the best-fitting estimates of
fNL from the KSW method for different values of �. Contrary to
the case of the point source and ISW-lensing foregrounds (see
Sect. 5), the skew-C� statistics do not show convincing evidence
for detection of the primordial shapes. In particular the skew-
spectrum related to primordial local NG does not have the right
shape, suggesting that whatever is causing this NG signal is not
predominantly local. Again, point sources contribute very little
to this statistic; ISW-lensing contributes, but only a small frac-
tion of the amplitude, so there are indications of additional NG
not captured by these foregrounds. In any event the estimators
are consistent with no primordial signal of the types considered.

As mentioned before, our analysis went beyond the simple
application of the KSW estimator to the SMICA map. All fNL
pipelines developed for Planck analysis were actually applied
to all component-separated maps by SMICA, NILC, SEVEM, and
C-R. We found from simulations in the previous Sections that
the KSW, binned, and modal pipelines saturate the Cramér-Rao
bound, while the wavelet estimator in its current implementation
provides slightly suboptimal results. Wavelets remain however a
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Table 9. Results for the fNL parameters of the primordial local, equilateral, and orthogonal shapes, determined by the KSW, binned
and modal estimators from the SMICA, NILC, SEVEM, and C-R foreground-cleaned maps. Both independent single-shape results and
results marginalized over the point source bispectrum and with the ISW-lensing bias subtracted are reported; error bars are 68%
CL .

Independent ISW-lensing subtracted
KSW Binned Modal KSW Binned Modal

SMICA
Local . . . . . . . . . . . . . . . . 9.8 ± 5.8 9.2 ± 5.9 8.3 ± 5.9 . . . . . 2.7 ± 5.8 2.2 ± 5.9 1.6 ± 6.0
Equilateral . . . . . . . . . . . . −37 ± 75 −20 ± 73 −20 ± 77 . . . . . −42 ± 75 −25 ± 73 −20 ± 77
Orthogonal . . . . . . . . . . . . −46 ± 39 −39 ± 41 −36 ± 41 . . . . . −25 ± 39 −17 ± 41 −14 ± 42

NILC
Local . . . . . . . . . . . . . . . . 11.6 ± 5.8 10.5 ± 5.8 9.4 ± 5.9 . . . . . 4.5 ± 5.8 3.6 ± 5.8 2.7 ± 6.0
Equilateral . . . . . . . . . . . . −41 ± 76 −31 ± 73 −20 ± 76 . . . . . −48 ± 76 −38 ± 73 −20 ± 78
Orthogonal . . . . . . . . . . . . −74 ± 40 −62 ± 41 −60 ± 40 . . . . . −53 ± 40 −41 ± 41 −37 ± 43

SEVEM
Local . . . . . . . . . . . . . . . . 10.5 ± 5.9 10.1 ± 6.2 9.4 ± 6.0 . . . . . 3.4 ± 5.9 3.2 ± 6.2 2.6 ± 6.0
Equilateral . . . . . . . . . . . . −32 ± 76 −21 ± 73 −13 ± 77 . . . . . −36 ± 76 −25 ± 73 −13 ± 78
Orthogonal . . . . . . . . . . . . −34 ± 40 −30 ± 42 −24 ± 42 . . . . . −14 ± 40 −9 ± 42 −2 ± 42

C-R
Local . . . . . . . . . . . . . . . . 12.4 ± 6.0 11.3 ± 5.9 10.9 ± 5.9 . . . . . 6.4 ± 6.0 5.5 ± 5.9 5.1 ± 5.9
Equilateral . . . . . . . . . . . . −60 ± 79 −52 ± 74 −33 ± 78 . . . . . −62 ± 79 −55 ± 74 −32 ± 78
Orthogonal . . . . . . . . . . . . −76 ± 42 −60 ± 42 −63 ± 42 . . . . . −57 ± 42 −41 ± 42 −42 ± 42

squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coefficient r ∼
−0.5 between the local and orthogonal CMB templates), while
it is very small in the equilateral limit. The values of the ISW-
lensing bias we subtract, summarized in Table 1, are calculated
assuming the Planck best-fit cosmological model as our fidu-
cial model. The same fiducial parameters were of course consis-
tently used to compute the theoretical bispectrum templates and
the estimator normalization. Regarding the point source contam-
ination, we detect a Poissonian bispectrum at high significance
in the SMICA map, see Sect. 5.3. However, marginalizing over
point sources still carries a nearly negligible impact on the final
primordial fNL results, because the Poisson bispectrum template
has very small correlations with all the other shapes.

In light of the discussion at the beginning of this section, we
take the numbers from the KSW SMICA analysis in Table 8 as the

Table 10. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the subopti-
mal wavelet estimator from the SMICA foreground-cleaned map.
Both independent single-shape results and results marginalized
over the point source bispectrum and with the ISW-lensing bias
subtracted are reported; error bars are 68% CL. As explained in
the text, our current wavelets pipeline performs slightly worse in
terms of error bars and correlation to primordial templates than
the other bispectrum estimators, but it still provides a useful in-
dependent cross-check of other techniques.

Independent ISW-lensing subtracted
Wavelets Wavelets

SMICA
Local . . . . . . . . . 10 ± 8.5 0.9 ± 8.5
Equilateral . . . . . 89 ± 84 90 ± 84
Orthogonal . . . . . −73 ± 52 −45 ± 52

final local, equilateral and orthogonal fNL constraints for the cur-
rent Planck data release. These results clearly show that no evi-
dence of NG of the local, equilateral or orthogonal type is found
in the data. After ISW-lensing subtraction, all fNL for the three
primordial shapes are consistent with 0 at 68% CL. Note that
these numbers have been cross-checked using two completely
independent KSW pipelines, one of which is an extension to
Planck resolution of the pipeline used for the WMAP analysis
(Bennett et al. 2012).

Unlike other methods, the KSW technique is not designed
to provide a reconstruction of the full bispectrum of the data.
However, the related skew-C� statistic described in Sect. 3.2.2
allows, for each given shape, visualization and study of the con-
tribution to the measured fNL from separate �-bins. This is a
useful tool to study potential spurious NG contamination in the
data. We show for the SMICA map in Fig. 5 the measured skew-
C� spectrum for optimal detection of primordial local, equilat-
eral and orthogonal NG, along with the best-fitting estimates of
fNL from the KSW method for different values of �. Contrary to
the case of the point source and ISW-lensing foregrounds (see
Sect. 5), the skew-C� statistics do not show convincing evidence
for detection of the primordial shapes. In particular the skew-
spectrum related to primordial local NG does not have the right
shape, suggesting that whatever is causing this NG signal is not
predominantly local. Again, point sources contribute very little
to this statistic; ISW-lensing contributes, but only a small frac-
tion of the amplitude, so there are indications of additional NG
not captured by these foregrounds. In any event the estimators
are consistent with no primordial signal of the types considered.

As mentioned before, our analysis went beyond the simple
application of the KSW estimator to the SMICA map. All fNL
pipelines developed for Planck analysis were actually applied
to all component-separated maps by SMICA, NILC, SEVEM, and
C-R. We found from simulations in the previous Sections that
the KSW, binned, and modal pipelines saturate the Cramér-Rao
bound, while the wavelet estimator in its current implementation
provides slightly suboptimal results. Wavelets remain however a
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Fig. 6. Full 3D CMB bispectrum recovered from the Planck foreground-cleaned maps, including SMICA (left), NILC (centre) and
SEVEM (right), using the hybrid Fourier mode coefficients illustrated in Fig. 8, These are plotted in three-dimensions with multipole
coordinates {�1, �2, �3} on the tetrahedral domain shown in Fig. 1 out to �max = 2000. Several density contours are plotted with red
positive and blue negative. The bispectra extracted from the different foreground-separated maps appear to be almost indistinguish-
able.

Fig. 7. Planck CMB bispectrum detail in the signal-dominated regime showing a comparison between full 3D reconstruction using
hybrid Fourier modes (left) and hybrid polynomials (right). Note the consistency of the main bispectrum properties which include
an apparently ‘oscillatory’ central feature for low-� together with a flattened signal beyond to � � 1400. Note also the periodic CMB
ISW-lensing signal in the squeezed limit along the edges of the tetrapyd.

These amplitudes show remarkable consistency between the dif-
ferent maps, demonstrating that the alternative foreground sepa-
ration techniques do not appear to be introducing spurious NG.
Note that here the βR

n coefficients are for the orthonormalized
modes Rn (Eq. (63)) and they have a roughly constant variance,
so anomalously large modes can be easily identified. It is ev-
ident, for example, that among the low modes there are large
signals, which include the ISW-lensing signal and point source
contributions.

Using the modal expansion of Eq. (45) with Eq. (63), we
have reconstructed the full 3D Planck bispectrum. This is illus-
trated in Fig. 6, where we show “tetrapyd” comparisons between
different foreground cleaned maps. The tetrapyd (see Fig. 1) is
the region defined by the multipoles that obey the triangle condi-
tion, with � ≤ �max. The 3D plots show the reduced bispectrum of
the map, divided by a Sachs-Wolfe CMB bispectrum solution for

a constant primordial shape, S (k1, k2, k3) = 1. This constant pri-
mordial bispectrum template normalizaton is carried out in order
to remove an ∼ �4 scaling from the starting bispectrum (it is anal-
ogous to multiplication of the power spectrum by �(� + 1)). To
facilitate the interpretation of 3D bispectrum figures, note that
squeezed configurations lie on the edges of the tetrapyd, flat-
tened on the faces and equilateral in the interior, with b��� on the
diagonal. The colour levels are equally spaced with red denot-
ing positive values, and blue denoting negative. Given the cor-
respondence of the βR

n coefficients for SMICA, NILC, and SEVEM,
the reconstructed 3D signals also appear remarkably consistent,
showing similar contours out to � � 1500. At large multipoles �
approaching �max = 2000, there is increased randomness in the
reconstruction due to the rise in experimental noise and some
evidence for a residual point source contribution.
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Fig. 8. Modal bispectrum coefficients βR
n for the mode expansion

(Eq. (63)) obtained from Planck foreground-cleaned maps using

hybrid Fourier modes. The different component separation meth-

ods, SMICA, NILC and SEVEM exhibit remarkable agreement. The

variance from 200 simulated noise maps was nearly constant for

each of the 300 modes, with the average ±1σ variation shown in

red.

Fig. 9. The total integrated bispectrum F2

NL
defined in Eq. (64)

as a cumulative sum over orthonormal modal coefficients βR
n

2

(upper panel) and over multipoles up to a given � (lower panel).

Above, the relative quantity F2

NL
≡ F̄2

NL
−FG

NL

2
is plotted, where

FG

NL

2
is the mean obtained from 200 CMB Gaussian maps with

the standard deviation shown as the red line. Below the square

of the bispectrum is integrated over the tetrapyd out to � and its

significance plotted relative to the Gaussian standard deviation

(1σ red line). A hybrid polynomial basis nmax = 600 is employed

in the signal-dominated region � ≤ 1500.

There are some striking features evident in the 3D bispec-

trum reconstruction which appear in both Fourier and polyno-

mial representations, as shown in more detail in Fig. 7. There is

an apparent oscillation at low � � 500 already seen in WMAP-7

(Fergusson et al. 2012). Beyond out to � ∼ 1200 there are further

distinct features (mostly “flattened” on the walls of the tetrapyd),

and an oscillating ISW-lensing contribution can be discerned in

the squeezed limit. Whatever its origin, Gaussian or otherwise,

Fig. 7 reveals the CMB bispectrum of our Universe as observed

by Planck.

The cumulative sum F2

NL
over the squared orthonormal co-

efficients βR

n
2

from Eq. (64) for the Planck data is illustrated in

Fig. 9 (upper panel). The Planck bispectrum contribution can

be directly compared with Gaussian expectations averaged from

200 lensed Gaussian maps with simulated residual foregrounds.

It is interesting to note that the integrated bispectrum signal

fairly consistently exceeds the Gaussian mean by around 2σ
over much of the domain. This includes the ISW and PS con-

tributions for which subtraction only has a modest effect. Also

shown (lower panel) is the corresponding cumulative F2

NL
quan-

tity as a function of multipole �, for which features have visible

counterparts at comparable � in Fig. 7. Despite the high bispec-

trum signal, this χ2
-test over the orthonormal mode coefficients

βR

n is cumulatively consistent with Gaussianity.

7.2.2. Binned bispectrum reconstruction

As explained in Sect. 3.4.2, it is interesting to study the smoothed

observed bispectrum divided by its expected standard devia-

tion, since this will indicate if there is a significant deviation

from Gaussianity for certain regions of �-space. This quantity is

shown in Figs. 10 and 11 as a function of �1 and �2, for two differ-

ent values (or rather, bins) of �3: the intermediate value [610,654]

in Fig. 10 and the high value [1330,1374] in Fig. 11. Each figure

shows the results for the SMICA, NILC, SEVEM, and C-R cleaned

maps as well as for the raw 143 GHz channel map. The bis-

pectra were obtained with the binned bispectrum estimator and

smoothed with a Gaussian kernel as explained in Sect. 3.4.2.

Very blue or red regions indicate significant NG, regions that are

less red or blue just represent expected fluctuations of a Gaussian

distribution.

From Fig. 10 at an intermediate value of �3 we can conclude

that there is a very good agreement between SMICA, NILC, and

SEVEM for all values of �1 and �2, and with C-R up to about

�1, �2 ∼ 1500. In fact, up to 1500 there is also a good agree-

ment with the raw 143 GHz channel. We also see no significant

non-Gaussian features in this figure (except maybe in the C-R
and raw maps at �1, �2 > 2000).

Figure 11 at a high value of �3, on the contrary, shows signif-

icant non-Gaussian features in the raw map, but much less NG in

the cleaned maps. In particular one can see the point source bis-

pectral signal at high-� approximately equilateral configurations.

There is still an excellent agreement between SMICA, NILC, and

SEVEM. The C-Rmap shows less NG than the other three cleaned

maps, which is consistent with the absence of a detection of the

Poisson point source bispectrum for C-R, see Table 3.

7.3. Constraints on specific targeted shapes

We have deployed the modal estimator to investigate a wide

range of the inflationary models described in Sect. 2. This is

the same validated estimator for which the standard fNL re-

sults have been reported in the Sect. 7, but it is augmented with
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Galaxy cluster counts’ sensitivity to NG

Lots of effort in the community to calibrate
the non-Gaussian mass function - 

dn/dlnM(M, z) - of DM halos
(analytic extensions of Press-Schechter + simulations)

NG initial PDF
! sensitivity to counts

“on the tail”



DM halo gets more massive with fNL>0 (and v.v.)
fNL=+5000

M=1.2 1016 M⊙

fNL=+500
M=5.9 1015 M⊙

fNL=+3000
M=1.2 1016 M⊙

fNL=+3000
M=1.2 1016 M⊙

fNL=-500
M=4.3 1015 M⊙

fNL=0
M=5.1 1015 M⊙

fNL = 500

Mapping  between
MG and M≣MNG :

Dalal, Doré, Huterer & Shirokov 2008

dN

dM
=

�
dP (M |MG)

dM

dN

dMG
dMG

MG (h!1 Msun)
M

 (h
!1

 M
su

n
)

! NG mass function:



Unfortunately, cluster counts are weakly 
sensitive to NG

NG/Gaussian mass function ratios:
for fixed M, more sensitivity 

at higher redshift

Smith & LoVerde 2011; Pillepich, Porciani and Hahn 2009;
many others going back to 1990s

(a) (b)

(c) (d)

Figure 2: Comparison of the Edgeworth (Eq. (33)) and log-Edgeworth (Eq. (35)) mass functions for

non-Gaussian initial conditions with nonzero fNL and τNL. For τNL = (65fNL)2 (i.e. perturbations

generated entirely by the curvaton) they both provide reasonably good fits. For τNL = 2(65fNL)2

(i.e. equal power from the curvaton and inflaton) the log-Edgeworth mass function is in better

agreement.
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e.g. "(fNL)=145 forecasted from SDSS (Sefusatti, Vale, Kadota & Frieman 2007)
e.g. "(fNL)=450 measured from SPT (Williamson et al 2010)

• cluster abundance is sensitive to ALL non-Gaussianity
• (large) amount of (local model) NG can boost the number 

of ‘pink elephant’ clusters

Nevertheless:



Hoyle, Jimenez & Verde (2011); 
Cayon, Gordon & Silk (2011); 
Holz & Perlmutter 2011

High-z, high-M - ”pink elephant” - clusters of galaxies

•SPT-CL J0546-5045:  z=1.067, M!(8.0±1.0)·1014 Msun

•XMMU J2235.3-2557: z=1.39,  M!(8.5±1.7)·1014 Msun

•SPT-CL J2106-8544:  z=1.132, M!(1.3±0.2)·1015 Msun

Some authors have claimed the existence of these clusters is in 
conflict with LCDM, but can be explained with (huge; fNL"500) 

non-Gaussianity4 Foley et al.

Fig. 1.— SPT-CL J2106-5844 at millimeter, optical, and infrared wavelengths. Left: The filtered SZ significance map derived from

multi-band SPT data. The frame subtends 12� × 12�. The negative trough surrounding the cluster is a result of the filtering of the time

ordered data and maps. Right: LDSS3 optical and Spitzer/IRAC mid-infrared gi[3.6] (corresponding to BGR channels) images. The frame

subtends 4.�8 × 4.�8. The white contours correspond to the SZ significance from the left-hand panel. The circles mark spectroscopically

confirmed cluster members, where green indicates quiescent, absorption-line member galaxies and cyan indicates an active, emission-line

member galaxy. Some spectroscopic member galaxies are outside the FOV for this image.

Fig. 2.— Color-magnitude diagram (J − [3.6] vs. [3.6]) for galax-
ies within the IRAC FOV. Suspected red-sequence cluster members

are plotted in red. Lower-probability, but potential cluster mem-

bers are plotted in blue. Spectroscopic members are plotted as

stars, where the red stars correspond to passive galaxies and the

blue star represents an emission-line galaxy. Additional galaxies

in the field are plotted as black points. The size of the symbol is

inversely proportional to the distance to the center of the cluster

as determined by the clustering of the red-sequence galaxies. Our

5-σ limits are plotted as dotted lines. A red-sequence model cor-

responding z = 1.132 is represented as the solid black lines with a

representative L∗ galaxy represented by the black diamond.

luric line removal were performed using the well-exposed
continua of spectrophotometric standard stars (Wade &

Horne 1988; Foley et al. 2003).
Three independent redshift determinations were per-

formed using a cross-correlation algorithm (IRAF
RVSAO package; Kurtz & Mink 1998), a template fit-
ting method (SDSS early-type PCA templates), and a
χ2 minimization technique by comparing to galaxy tem-
plate spectra. There were only minor differences in the
final results from the three methods. In total, we have
obtained secure redshifts, consistent with membership in
a single cluster, for 18 galaxies. Two of these galaxies
have obvious [O II] emission, while the others have SEDs
consistent with passive galaxies with no signs of ongoing
star formation.
A 3-σ clipping was applied around the peak in redshifts

to select spectroscopic cluster members. Representative
spectra of cluster members and a redshift histogram of
cluster members are presented in Figure 3. Redshift in-
formation for cluster members is presented in Table 1. A
single galaxy was observed and has a secure redshift from
both Magellan and VLT. Although the VLT spectrum
shows clear Ca H&K absorption lines and the Magel-
lan spectrum only shows the D4000 break, the measured
redshifts are consistent.
A robust biweight estimator was applied to the

spectroscopic sample to determine a mean redshift of
z = 1.131+0.002

−0.003 and a velocity dispersion of σv =
1230+270

−180 km s−1. The uncertainty in both quantities
is determined through bootstrap resampling. Since the
dynamics of passive and star-forming galaxies within
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Mortonson, Hu & Huterer 2011  

Are the pink elephants in conflict with 
LCDM?!

1. Sample variance - the Poisson noise in counting rare 
objects in a finite volume

2. Parameter variance - uncertainty due to fact that current 
data allow cosmological parameters to take a range of values

3. Eddington bias - mass measurement error will 
preferentially ‘scatter’ the cluster into higher mass

4. Survey sky coverage - needs to be fairly assessed

4 things to account for:

N.B. If a cluster rules out LCDM, it will rule out quintessence too!
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No conflict - for now.



Next Frontier: Large-Scale Structure

CMB LSS

dimension 2D 3D

# modes #lmax
2 #kmax

3

systematics &
selection func.

relatively 
clean

relatively 
messy

temporal evol. no yes

can slice in # only #, M, bias...



Effects of primordial NG 
on the bias of virialized objects



Same initial conditions, different fNL 
Slice through a box in a simulation Npart=5123, L=800 Mpc/h

 Under-dense region evolution 
decrease with fNL

 Over-dense region evolution 
increase with fNL

Simulations with non-Gaussianity (fNL)

Dalal, Doré, Huterer & Shirokov 2008

fNL= -5000

375 Mpc/h
80

 M
pc

/h

fNL= -500

fNL= 0

fNL= +500

fNL= +5000



Does galaxy/halo bias depend on NG?
cosmologists 

measure

theory predictsusually nuisance
parameter(s)

bias ≡ clustering of galaxies

clustering of dark matter
=

�
δρ

ρ

�

halos�
δρ

ρ

�

DM

19
83
Ap
J.
..
27
0.
..
20
B

ξclusters(r) =

�
r

25Mpc

�−1.8

ξgalaxies(r) =

�
r

5Mpc

�−1.8

Bahcall & Soneira 1983



Bias of dark matter halos

Simulations and theory both say:  large-scale bias is scale-independent 
(theorem if halo abundance is function of local density

and if the short and long modes are uncorrelated)

Ph(k, z) = b2(k, z)PDM(k, z)
Peak-Background Split

• Schematic Picture:

3

2

1

0

x

δc

Large Scale "Background"

Enhanced 
"Peaks"

figure credit: Wayne Hu



Scale dependence of NG halo bias

Dalal, Doré, Huterer & Shirokov 2008

b(k) = bG + fNL
const

k2
Verified using a variety of theoretical

derivations and numerical simulations.



Implications:

∆b(k) = fNL(bG − 1) δc
3 ΩMH

2
0

T (k)D(a)k2

Dalal et al.;  Matarrese & Verde; Slosar et al; Afshordi & Tolley; Desjacques et al; 
Giannantonio & Porciani; Grossi et al; McDonald; ....

‣ Unique 1/k2 scaling of bias; no free parameters

‣ Distinct from effect of all other cosmo parameters

‣ Straightforwardly measured (g-g, g-T,...)

‣ Derived theoretically several different ways

‣ Extensively tested with numerical simulations; good 
agreement found

‣In general, LSS can probe: $b(k) # {
•k!2 (local)
•k!1 (folded)
•k0 (equilateral)
•k!% (generic); 0"%"3



fNL = 8 +/- 30 (68%, QSO)      

fNL = 23 +/- 23 (68%, all)      

Future data forecasts for LSS: "(fNL) ! O(few)  
(at least?) as good as, and highly complementary, to Planck CMB

Slosar et al. 2008
(also Giannantonio et al 2013)

Constraints from current data: SDSS
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FIG. 15. Comparison of the marginalized posterior probabil-
ity distribution on fNL using the parts of our data set giving
the strongest contributions. We show the results from sin-
gle cross-correlation functions (top, green), auto-correlations
(center, blue), and from combined sub-samples of the whole
data set (bottom, red). The lines correspond to 68 and 95%
ranges, have been marginalized over the cosmological param-
eters, and include the WMAP7 CMB priors. The points
represent the mean values of the posterior likelihoods. The
results from single auto-correlation functions have also been
marginalized over one bias parameter and one stellar contam-
ination fraction (for the SDSS samples). The NVSS ACF
result appears weaker than expected beacuse it features a
double peak in fNL. To best present the relative constrain-
ing power of the cross-correlation measurements, we have
placed priors on the bias and stellar contamination parame-
ters, which significantly overstate the constraints these cross-
correlation allow on their own. See the main text for more
details.

generacy between κ and fNL is present only when using
the quasar ACF alone.
We summarize the constraints on fNL in Table III and

in Fig. 15 for clarity. Here we compare the marginal-
ized results obtained when using the most constrain-
ing parts of our data set. We can see once again
that most results agree with Gaussian initial conditions,
and with each other. When considering single auto-
correlation functions, we marginalize over cosmology in-
cluding the WMAP CMB likelihood, and over one bias
parameter and one stellar contamination fraction (for the
data derived from SDSS). To better interpret the cross-
correlations on their own, we have assigned Gaussian pri-
ors on the relevant bias and stellar contamination pa-
rameters equal to the posteriors on these parameters ob-
tained from the ‘fair’ data. Applying these priors allows

us to accurately portray the relative importance of each
cross-correlation to our bottom-line results. Further-
more, we found that applying the bias prior to the auto-
correlations would increase the precision of their fNL con-
straints by a factor of two. Accounting for this factor, the
LRG auto-correlation is the best-constrained measure-
ment that enters the ‘conservative’ data set. When using
the LRG ACF only we recover a result consistent with the
recent analysis by Ref. [37], who found −45 < fNL < 195
at 95% using the spectroscopic sample of the CMASS
LRGs, which contains ∼ 1/3 of the photoz sample we
use.

Notice that the factor (b1−1) within the bias correction
∆b is the leading contribution that determines the size
of the fNL error bars. For this reason, the low-bias data
from 2MASS, the SDSS main galaxies, and HEAO bring
little information on fNL. Also the external correlations
of the quasars bring less contribution than it may be
expected, since the quasar bias at low redshift is also
low. This explains why the strongest constraints come
from NVSS, the LRGs and their external correlations.
For this reason, we have also checked the effect of the
assumed NVSS bias evolution with one additional run
where the evolution parameter γNVSS is let free, and we
found no significant changes in the results.

The aNL Model We then extend our model to gen-
eralized PNG defined in Eq. (8): in addition to fNL,
we thus allow for scale dependence of the bias of any
slope aNL, which reduces to aNL = 2 in the local, scale-
independent case. We show our marginalized posterior
likelihood distribution in the top panel of Fig. 16, where
we can see that, in line with the lack of evidence for fNL,
there is no evidence for aNL either. The full marginalized
upper limit we find is aNL < 1.7 at 95%, but it must be
born in mind that there is an infinite degeneracy along
the direction fNL = 0 by construction: thus, this result
is strongly dependent on our adopted priors, rather than
being a “stand-alone measurement”. The correspondent
bound on nfNL can be found using Eq. (10).

The gNL Model We finally consider the gNL model.
We shall here make the optimistic assumption that the
fitting formula of Eq. (7) is a reasonable approximation
to the effect of gNL, keeping in mind that this may not be
accurate in all cases due to the low bias of our catalogs.
Under this assumption we find −4.5·105 < gNL < 1.6·105
(95%) if assuming fNL = 0. However as shown by
Refs. [64, 65], and as clear from Eq. (1), there is a de-
generacy between fNL and gNL, as both parameters pro-
duce a scale dependence of the bias of the same order
∼ k−2; the degeneracy is alleviated by the different red-
shift dependences. This is indeed what happens when
we consider the complete model where both parameters
are left free: we can see in the bottom panel of Fig. 16
that the marginalized posterior presents this degeneracy,
as demonstrated with N -body simulations by Ref. [65].
Also in this case the Gaussian model remains well within
the 95% region: the marginalized constraints on the two
parameters are marginally degraded to −23 < fNL < 42
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FIG. 5: The total covariance matrix obtained with 5000
Monte Carlos, normalised. The top panel shows the
temperature-only Monte Carlos, while the bottom panel is the
result of the full Monte Carlos. While the diagonal (single ex-
periment) covariances are similar, those between experiments
(off-diagonal) are somewhat different.

1. 2MASS

From Fig. 3 it is clear that the CCF for the 2MASS
survey is consistent with zero. Previous analyses of
these data found some evidence for a positive correla-
tion [11, 12]; however, these were performed in Fourier
space and included modelling of the SZ effect, which man-
ifests itself with anti-correlations at small angular scales.
Indeed, it appears in Fig. 3 that the observed CCF turns
over at small angles. If the smallest four angular bins
are removed, the fit to the CCF is consistent with the
ΛCDM theory; however, it is only significant at the ∼ 1σ
level. In any case, 2MASS appears to have the least sig-

nificant evidence for cross-correlations.

2. SDSS galaxies

The main galaxy sample from the SDSS has a mea-
sured CCF which is also in good agreement with the the-
ory. In this case, we note that we do not find agreement
with the previous result of [13], who reported a measured
CCF of almost double the amplitude that we detect.

After discussions with the authors [13], we jointly
found this discrepancy resulted from an additional clean-
ing cut, where they discarded all galaxies with a large
error on their Petrosian r magnitude, imposing the con-
dition petroMagErr r < 0.2. Imposing this same condi-
tion, we found that we could reproduce their result. Fur-
ther, masking those areas with high proportion of Pet-
rosian error also gave similar results.

However, the motivation for such a cut is unclear. It
is known that the Petrosian magnitudes are not accu-
rate for faint objects, for which the best estimator is
the model magnitude [55]. While having objects with
a well measured magnitude is desirable, we see no reason
why cutting galaxies on the basis of a poor estimate of
their magnitudes should double the correlation with the
CMB. This could happen if it were produced by some
foreground mechanism, such as seeing or reddening, but
we checked that none of the possible foreground maskings
raised the CCF in any way comparable to the aforemen-
tioned cut.

Therefore, lacking a valid reason to include this cut,
and preferring to be conservative, we do not make the
Petrosian error cut and our CCF is thus lower than seen
by Cabré et al. [13]. While it is worrying that a choice of
masking has such a dramatic effect on the amplitude of
the observed cross-correlation, it should be noted that the
cross-correlation was largely independent of other mask-
ing choices.

3. SDSS MegaZ LRGs

The result for the LRG is the highest in comparison
with the ΛCDM theory. It agrees with the result of [13].
A direct comparison with [17] and [16] is more difficult
because these analyses use multiple photometric redshift
bins. Concentrating on [17] (since it also does its analy-
sis in physical space, rather than Fourier space), we find
approximately the same detection significance as their
single redshift bin measurements for similar data sets.
An updated version of this paper (available on the astro-
ph archive, but also unpublished) calculates a global χ2

value using all four of their LRG samples, and detects
a CCF with significance somewhat higher than we mea-
sure in this work. This is likely due in part to a somewhat
larger redshift baseline for their measurement as well as
the fact that they calculated their covariance matrix us-
ing a method similar to our MC1 case. As one can see

Giannantonio et al. 2013

Covariance matrix

Final constraints:



Cunha, Huterer & Doré 2010

NG can survive marginalization over numerous systematic effects
e.g:

- relation of mass of cluster and its observable quantity (T, flux, etc)
- redshift evolution of bias

Nongaussianity form clustering of galaxy clusters

Dark Energy Survey cluster forecasts

sance parameters (both halo bias and mass-observable).
We see that the change in the constraints from combined
counts3 and clustering is even more remarkable than the
unmarginalized constraints shown in the right panel. The
full clustering covariance yields about 1 order of magni-
tude better constraints than if only the variance is used. As
we shall see, this fractional improvement remains even
when we include nuisance parameters.

Tables II and III show fNL constraints using the variance
of cluster counts, and the full covariance, respectively. The
results assumed Planck priors on the cosmological parame-
ters, 10 nuisance parameters describing the mass-
observable relation, and 3 nuisance parameters describing
uncertainties in the Gaussian halo bias.

Comparing the last columns of Tables II and III, we see
that the countsþ covariance combination yields about an
order of magnitude improvement over simply using
countsþ variance. For the countsþ variance, the uncer-
tainties in the halo bias parameters are the main source of
degradation to fNL constraints. Without the information
from large separations provided by the full covariance, the
Fisher matrix cannot disentangle the effects due to the
Gaussian bias from the fNL contribution. When the full

covariance is used (cf. Table III), the errors in the mass-
observable relation are the dominant source of degradation.
Marginalizing over all nuisance parameters, assuming flat
priors, yields a degradation of "3 in !ðfNLÞ. This is not
large, considering we added 13 nuisance parameters, but
not negligible either. Even modest prior information can
improve the marginalized constraints significantly.
There are two principal reasons for the strong improve-

ment of errors when the covariance is added:
(1) The strong scale dependence of the bias as a func-

tion implies that most signal comes from the cova-
riances, since the covariances have longer lever
arms in k than the variance alone (and are much
more sensitive than counts which only depend on
non-Gaussianity via the mass function);

(2) The signature of fNL in the covariance is unique, as
no other cosmological parameter leads to a similar
effect—therefore, the degeneracy with other cosmo-
logical parameters is very small, as first noted by
[35].

Comparing the fNL constraints for the full covariance for
fixed nuisance parameters (Table III) to the unmarginalized
constraints (Table I), we see that degeneracies with cos-
mological parameters only result in a small degradation of
fNL constraints (from 1.7 to 1.8).
Tables II and III also show the constraints obtained using

counts alone, or (co)variance by itself. The information
about fNL from the counts is very degenerate with the
cosmological and nuisance parameters. The ‘‘1’’ symbols

TABLE III. Marginalized constraints on fNL and dark energy with cluster counts, covariance of the counts, and the two combined.
The fiducial case assumes 5 bins in mass and redshift each with a mass threshold Mth ¼ 1013:7, maximum redshift zmax ¼ 1:0, and
other assumptions as in the text. Assumptions about the nuisance parameters are varied, and are shown in the first two columns. Entries
with 1 indicate that the method was unable to constrain the parameters.

Marginalized errors—Full Covariance
Nuisance parameters Counts Covariance Countsþ Covariance

Halo bias Mobs !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ
Marginalized Marginalized 1 1 1 1 1 1 0.069 0.23 6:0
Known Marginalized 0.097 0.33 2:1& 103 0.13 0.43 12 0.065 0.22 5:4
Marginalized Known 1 1 1 0.099 0.34 7:0 0.0036 0.014 3:8
Known Known 0.0051 0.023 94 0.042 0.13 5:1 0.0036 0.014 1:8

TABLE II. Marginalized constraints on fNL and dark energy with cluster counts, variance of the counts, and the two combined. The
fiducial case assumes 5 bins in mass and redshift each with a mass threshold Mth ¼ 1013:7, maximum redshift zmax ¼ 1:0, and other
assumptions as in the text. Assumptions about the nuisance parameters are varied, and are shown in the first two columns. Entries with
1 indicate that the method was unable to constrain the parameters.

Marginalized errors—Variance only
Nuisance parameters Counts Variance Countsþ Variance

Halo bias Mobs !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ !ð!DEÞ !ðwÞ !ðfNLÞ
Marginalized Marginalized 1 1 1 1 1 1 0.075 0.25 55
Known Marginalized 0.095 0.32 3:4& 103 1 1 1 0.061 0.21 27
Marginalized Known 1 1 1 0.077 0.26 98 0.0037 0.016 44
Known Known 0.0046 0.021 91 0.053 0.18 67 0.0035 0.014 19

3The slight degradation in fNL constraints from counts seen in
the right panel is real, and is due to adding the (positive)
covariance matrix elements to the counts noise; see the first
term on the right-hand side of Eq. (11). Using the full covariance
therefore yields very slightly worse constraints.

PRIMORDIAL NON-GAUSSIANITY FROM THE . . . PHYSICAL REVIEW D 82, 023004 (2010)

023004-7

Counts mainly probe DE parameters
Covariance (= cluster P(k)) mainly probes fNL

Combining them, you get both DE and fNL



More general NG models:
beyond fNL



at 95% CL

nfNL = 0.3+1.9
−1.2

Becker & Huterer, PRL 2012

First constraints on the running of NG

fNL(k) = f∗
NL
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�nfNL

WMAP7 data, modified KSW estimator



Forecasts for
 fNL(k)

Becker, Huterer & Kadota, 2012
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Shandera, Dalal & Huterer 2012

Notably:



Systematic Errors:
(photometric) calibration errors

c.f. 
“Calibration and Standardization of Large Surveys and Missions in A&A” workshop 
Fermilab, 16-19 April 2012



For the NG measurements, photo-z but also:
(photometric) calibration errors

‣Detector sensitivity: sensitivity of the pixels on the camera vary along 
the focal plane.  Sensitivity of a given pixel can change with time. 

‣Observing conditions: spatial and temporal variations.

‣Bright objects: The light from foreground bright stars and galaxies 
affects the sky subtraction procedure, which impairs the surveys' 
completeness near bright objects.

‣Dust extinction: Dust in the Milky Way absorbs light from the distant 
galaxies. 

‣Star-galaxy separation: In photometric surveys, faint stars can be 
erroneously included in the galaxy sample.  Conversely, galaxies are 
sometimes misclassified as stars and culled from the sample. Remember, 
stars are not randomly distributed across the sky.

‣Deblending: Galaxy images can overlap, and it can be difficult to cleanly 
separate photometric and spectroscopic measurements for the blended  
objects.

Carlos Cunha



LSS calibration errors: 
example maps, power spectraThe large-scale angular power spectrum in the presence of systematics: a case study of SDSS quasars 11

(a) Stellar density (b) Extinction (c) Airmass (d) Seeing (e) Sky brightness

Figure 11. Systematics templates used in this analysis, and the (dimensionless) angular power spectra C̃� of their overdensity maps.

(a) Mask 1 (b) Mask 2 (c) Mask 3

Figure 12. Masks used for the power spectrum analysis of RQCat, in Equa-
torial coordinates. Retained regions are based on thresholds summarised in
Table 2 and the systematics templates of Fig. 11. Additional excised rect-
angles follow Pullen & Hirata (2012). The three masks respectively have
fsky = 0.148, 0.121, and 0.101.

3.5 Power spectrum results

We obtained angular band-power estimates with the QML estima-
tor and multipole bins of size ∆� = 11, which led to a good
balance in terms of multipole resolution and variance of the esti-
mates. We did not use the PCL estimator for the final results be-
cause the geometry of the second and third masks, in addition to
the presence of systematics, yielded significantly suboptimal esti-
mates. To illustrate this point, Fig. 13 shows a comparison of the
PCL and QML covariance matrices and the band-power estimates
of the Mid+High-z subsample for the three masks. Any signifi-
cant increase of the PCL variance compared to that of QML, es-
pecially on diagonal- and nearly-diagonal elements which contain
the most significant contributions, demonstrates the suboptimality
of the PCL prior. For the first mask, the PCL variance of these el-
ements is at most ∼ 20% greater than the QML variance, indicat-
ing that the resulting estimates are nearly optimal. However, for
the second and third masks, these elements have a PCL variance
up to ∼ 50% greater than that of QML, and the resulting PCL
estimates significantly differ from the optimal QML estimates, as
shown in the bottom panel of Fig. 13. This effect is less pronounced
for larger multipole bins (e.g., ∆� = 31), as the likelihood be-
comes less sensitive to the priors on the pixel-pixel covariance ma-
trix. However, the resulting loss of resolution prevents the study of
localised multipole ranges affected by systematics. For these rea-
sons we opted for the QML estimator with ∆� = 11 in the fi-
nal analysis. We systematically marginalised over the values of the
monopole and the dipole by projecting them out. We used the val-
ues Ḡ−1 = 1.95 · 10−5, 1.55 · 10−5, 1.85 · 10−5 and 8.15 · 10−6

respectively for the shot noise of the four RQCat subsamples, cal-
culated from the average number count per steradian assuming 5%
stellar contamination.

The auto- and cross-spectra of the four RQCat samples are
presented in Figs. 14 and 15, and the χ2 values of the theory pre-
diction are listed in Table 3. We subtracted the shot noise from the
auto-spectra, and used a constant bias, bg = 2.3, following pre-
vious studies of these data (Slosar et al. 2008; Giannantonio et al.
2006, 2008; Xia et al. 2010; Pullen & Hirata 2012). The theory pre-
dictions are summarised in Fig. 10. We also used the exact window
functions Wb� for converting the theory power spectra into band-
powers; see Eq. (17). Figure 16 shows the cross-correlation power
spectra of the quasar samples with the systematics templates, and
Table 4 lists the corresponding χ2 values. Details of the χ2 compu-
tation are contained in Appendix C.

In Figs. 14 and 15, the top panels show the final band-power
estimates, where the modes corresponding to the five systematics
templates were projected out. The effect of mode projection on the
estimates is illustrated in the bottom panels, showing the differ-
ences in the QML estimates. Hence, these values can be added to
the estimates in the top panels to recover the results without mode
projection. The change in the covariance of the estimates due to
mode projection is negligible.

3.5.1 Reference mask

Our first mask, which is similar to that used in previous studies
of RQCat (Slosar et al. 2008; Giannantonio et al. 2006, 2008; Xia
et al. 2010; Pullen & Hirata 2012), is mostly based on extinction,
stellar density and seeing cuts, and also excises a few pixels with
extreme values of airmass and sky brightness. When using this ref-
erence mask, the auto-spectrum estimates of the four RQCat sub-
samples exhibit significant excess power in the first multipole bin.
In particular, the cross-correlation of the Low-z sample with the
other samples confirm the presence of systematics in common. The
cross-spectra of the quasar subsamples with the systematics tem-
plates, shown in Fig. 16, enable us to identify the main sources
of contamination responsible for this excess power. In addition to
seeing and airmass, which are the main contaminants in the four
samples, stellar contamination affects the Low-z sample, and dust
extinction and sky brightness contaminate the Mid-z and High-z
samples.

The auto- and cross-spectra are marginally improved by pro-
jecting out the modes corresponding to the systematics templates,
as shown by the small decrease in the χ2 values, summarised in
Tables 3 and 4. In particular, the large-scale power excess persists,
confirming the conclusions by Pullen & Hirata (2012) that the con-

c� 2013 RAS, MNRAS 000, ??–??

Leistedt et al 2013

• dominate on large angular scales
• can be measured, removed using same or other data
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Figure 2. The angular power spectrum in the four redshift slices of quasars. The choice of symbols

is the same as for LRGs in fig. 1. We note again that bins in each redshift slice that do not appear

contaminated can still be dropped because their cross-power with another redshift slice is significantly

contaminated and one cannot tell a priori which redshift slice is responsible for the contamination.

given value of ANL
�
kp = 0.1 Mpc

−1
�
, modifications to the power spectrum in the presence

of primordial non-Gaussianity come in at the largest measured scales (i.e. at small k). This
is no longer true when we allow for deviations from the local ansatz. In particular, as we

increase the value of α, non-Gaussian corrections become significant at smaller scales (close

to matter-radiation equality) which are better measured, strongly constraining models of

inflation that give α > 2. On the other hand, for 0 < α < 2, non-Gaussian corrections are

only significant at much larger scales, which are eventually limited by systematics.

Next we examine the constraints on α for a small fixed value of ANL. In fig. 3 we

– 11 –

Agarwal, Ho & Shandera, arXiv:1311.2606

Calibration errors in SDSS DR8 power spectra

QSO power spectra 
from SDSS; 
open circle points not 
used since they may
be systematics-
contaminated!

Similar results for LRGs
(not shown)



MNRAS 432, 2945–2961 (2013) doi:10.1093/mnras/stt653
Advance Access publication 2013 May 11

Calibration errors unleashed: effects on cosmological parameters
and requirements for large-scale structure surveys

Dragan Huterer,1‹ Carlos E. Cunha1,2 and Wenjuan Fang1,3

1Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040, USA
2Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford University, Stanford, CA 94305, USA
3Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Accepted 2013 April 15. Received 2013 April 12; in original form 2012 November 26

ABSTRACT
Imperfect photometric calibration of galaxy surveys due to either astrophysical or instrumental
effects leads to biases in measuring galaxy clustering and in the resulting cosmological pa-
rameter measurements. More interestingly (and disturbingly), the spatially varying calibration
also generically leads to violations of statistical isotropy of the galaxy clustering signal. Here
we develop, for the first time, a formalism to propagate the effects of photometric calibration
variations with arbitrary spatial dependence across the sky to the observed power spectra and
to the cosmological parameter constraints. We develop an end-to-end pipeline to study the
effects of calibration, and illustrate our results using specific examples including Galactic dust
extinction and survey-dependent magnitude limits as a function of zenith angle of the tele-
scope. We establish requirements on the control of calibration so that it does not significantly
bias constraints on dark energy and primordial non-Gaussianity. Two principal findings are (1)
largest-angle photometric calibration variations (dipole, quadrupole and a few more modes,
though not the monopole) are the most damaging and (2) calibration will need to be understood
at the ∼ 0.1 per cent–1 per cent level (i.e. rms variations mapped out to accuracy between 0.001
and 0.01 mag), though the precise requirement strongly depends on the faint-end slope of the
luminosity function and the redshift distribution of galaxies in the survey.

Key words: large-scale structure of Universe.

1 IN T RO D U C T I O N

Large-scale structure (LSS) measurements have become an extremely powerful probe of cosmology over the past 30 years. Starting with
the pioneering Harvard-CfA survey (de Lapparent, Geller & Huchra 1986), all the way to the Sloan Digital Sky Survey (SDSS; York et al.
2000) and its extension Baryon Oscillation Sky Survey (Dawson et al. 2013), Two-degree Field survey (Colless et al. 2001), and WiggleZ
(Drinkwater et al. 2010), the LSS surveys have revolutionized our understanding of the distribution of matter and energy in the cosmos, and
helped impose percent-level constraints on the cosmological parameters (e.g. Anderson et al. 2013).

A major challenge in current and future imaging and spectroscopic LSS surveys is understanding the sample selection. We define
calibration to be the measure of our understanding of the selection of our sample of galaxies, and calibration errors to be any unaccounted-for
angular and redshift variations in the selection. The purpose of this paper is to determine how well calibration errors need to be controlled in
order to avoid substantial degradation of the information we can extract from the LSS.

A particular source of uncertainty is known as photometric calibration. The term refers to the adjustments required to establish a consistent
spatial and temporal measurement of flux of the target objects in the different bands of observation throughout the entire photometric survey.
This is an enormous problem that all existing and upcoming wide area surveys face. The difficulty comes from the variability of various
building blocks of the observational pipeline, which makes it difficult to establish a consistent flux baseline at each band (i.e. the flux zero-
points). In other words, because the instrument sensitivity is constantly changing, and so are the sources and intensity of noise, it is difficult
to consistently compare the fluxes for objects at different parts of the sky imaged at different times. Some examples of the manifestations of
the photometric calibration errors in surveys are as follows.

! E-mail: huterer@umich.edu

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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How do the most generic calibration errors look (in the power spectrum)?

How do they affect NG (and DE) parameters?

Related works: Pullen & Hirata 2012, Leistedt et al 2013, Agarwal et al 2013
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How do calibration errors affect the 
measured galaxy angular power spectrum?

�t�mt∗��m�� =
1

(1 + �)2






δmm�δ���C�

� �� �
isotropic

+
�
U ���

mm� C�� + (U ���

mm�)∗ C�

�
+

�

�2m2

U �2�
m2m(U �2�

�

m2m�)∗ C�2 + c�mc∗��m�

� �� �
breaks statistical isotropy






U �2�
m2m ≡

�
�1m1

c�1m1R
�1�2�
m1m2m

R�1�2�
m1m2m ≡ (−1)m

�
(2�1 + 1)(2�2 + 1)(2�+ 1)

4π

�
�1 �2 �
0 0 0

��
�1 �2 �
m1 m2 −m

�

Final result for the observed power spectrum is:

where

True power Calibration (biases)

Cancels effects of 
calibration
monopole

t!m ! observed galaxy field
c!m ! calibration (systematics) field
C!  ! true galaxy clustering power

Huterer, Cunha & Fang, 2013



SFD dust map PG10 corrections to map

angular power of corrections bias/error in cosmology

Calibration bias: Worked Example 1

Huterer, Cunha & Fang 2013
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FIG. 6: Top panel: i-band magnitude limits estimated for the upcoming observations of the Dark Energy Camera at CTIO

as a function of angular position. The pattern of variations in the magnitude limits are set by the variations in the observing

conditions and the survey tiling strategy over the five years of the survey. Bottom left: power spectrum of the map on the

left, extracted using Polspice and shown without the usual �(� + 1)/(2π) term so that the relative contribution of different
multipoles can be more easily seen. Bottom right: biases in the cosmological parameters vs. the faint-end slope of the luminosity

function s(z) assuming calibration error maps is consistent with a fixed fraction of 10% of amplitude (or 1% of power) of the

magnitude-limit map shown in the top (bottom left) panel. The desired bias/error limit (horizontal dashed line) is exceeded

for s(z) � 1.

lar distribution of galaxy counts according to Eq. (2).

This modulation translates into additive and multiplica-

tive changes to the observed density fluctuation field, cf.

Eqs. (6) and (9), which in turn generate additive and

multiplicative changes to the observed power spectrum.

As shown in Eq. (11), photometric variations across

the survey masquerade as apparent violations of statisti-

cal isotropy. Hence, explicit tests of statistical isotropy

could provide a useful way to identify unaccounted-for

variations in the photometry. In this paper, we focused

on the effects in the angle-averaged power-spectrum, cf.

Eq. (14). We found that large-angle modulations of

power (dipole, quadrupole, etc), are particularly dam-

aging to cosmological analysis. We demonstrate this ex-

plicitly (cf. Eq. (30) and Fig. 2) for the case where the

variance in the photometric calibration error field is con-

centrated in one multipole �1 at a time. Note that the

spatially uniform photometric decrement or increment

across the sky (i.e. the monopole, �1 = 0) is unobservable

since it only affects the mean number of galaxies in the

survey.

Specializing in the angle-averaged power spectrum as

done in Eq. (14), one can explicitly show that largest-

angle fluctuations are dominant (for a fixed induced vari-

ance on the calibration error field c(n̂)). (Fig. 2). More-

over, highest-redshift clustering measurements are most

susceptible to the photometric variations, essentially be-

cause their angular power is the smallest and thus is more

affected by the photometric variation.

Less obviously, we find that the additive errors (e.g.

term proportional to |c�m|2 in Eq. (14)) are typically

dominant over the multiplicative biases (terms propor-

tional to the coefficients U) for all redshift bins and at

large angular scales. The reason is simple: because they

couple different multipoles, multiplicative terms are sup-

pressed relative to the additive ones by the fiducial an-

gular power spectrum C� factor; see the term with C�2 in

Eq. (14). Since C� � 1 even at low-z (and all �), the ad-

ditive terms dominate the error budget if all � modes are

used in the analysis. However, at slightly smaller angular

Calibration bias: Worked Example 2
DES magnitude limit (J. Annis)

Huterer, Cunha & Fang 2013
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Challenges for NG/LSS program
... and approximate current status

•Motivate NG models ✓(single-field, multiple fields, self-int)

•Utilize a variety of observables in LSS and CMB to get 
at NG ✓
•Develop fast, near-optimal estimators to extract NG 
from the CMB ✓and LSS ✓!
•Develop theory to relate NG models to LSS observables 
✓! (messy; still need to check with sims)

•Develop theory to use LSS info from 1, 2 pt function of 
halos ✓and galaxies/QSO ✓! (both with concerns)

•Use galaxy bispectrum ! and weak lensing bispectrum 
!! to get at primordial NG [eg fNL

equil]

•Control the systematic errors, esp large-scale LSS ✓!
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