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Why the CMB matters 

•  One of the main reasons for the 
emergence of a well-tested 
“standard model” in cosmology. 

•  Probes large scales, early times 
(linear perturbations). 

•  CMB angular power spectrum 
matches predictions remarkably 
well. 
»  Hundreds of data points fit with 

~6 parameters. 
»  Fit is “bumpy” – unlikely to get a 

good fit by chance. 
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The standard model 

•  (Nearly) homogeneous & isotropic spacetime 
•  Governed by GR. 
•  Contents:  

»  Baryons, cold dark matter, Λ-like dark energy, 
photons, neutrinos. 

•  Initial perturbations:  
»  Small, Gaussian, adiabatic, with a nearly scale-

invariant power spectrum. 
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Consistency among different measurements 

•  CMB 
•  Sne Ia 
•  Galaxy clusters 
•  Galaxy power spectrum 
•  Galaxy velocities 
•  Light element abundances 
•  Globular cluster ages 
•  H0 measurements 
•  … 

H0 = 70 (km/s)/Mpc 

Age of Universe = 14 Gyr 

Oldest stars = 12-13 Gyr. 

Matter density ≈ 0.2. 

Baryon density:  0.04. 

Dark energy density 
≈ 0.7. 

Acoustic waves in the 
early Universe 
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CMB Polarization 

Temperature variations 
+ 

Thomson Scattering 
= 

Polarization 
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E and B Components 
•  Two different kinds of polarization patterns: 

»  E component: scalar (no handedness). 
»  B component: pseudoscalar (handedness). 
»  (Analogy: curl-free, divergence-free vector fields) 

•  Gravitational waves during inflation should produce B; ordinary density 
perturbations can’t (to linear order). 

•  Detection of B: Strong confirmation of inflation! 

•  But … non-detection doesn’t falsify inflation 
»  Signal is detectable only if Einfl > 1015 GeV (close to existing upper 

limits). 
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E and B Components 

Polarization, k in “+” orientation Polarization, k in “x” orientation 
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E and B Components 
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Predictions 
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Multiple polarization detections 
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(Komatsu et al. 2010) 



Characterizing B modes will be hard. 

•  Small signal (~ 100 nK). 
»  ~103 detectors for ~1 year to reach 

required sensitivity. 
•  Need to avoid contamination from much 

larger E,T signals. 
»  Incomplete sky coverage è E/B 

mixing. 
»  Control of systematic errors is crucial. 

•  Inflation signal on large angular scales – 
hard to see from ground.  

•  Foregrounds?? 
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Bock et al. ‘06 (Weiss report) 
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Interferometry? 

•  Usual way of measuring polarization 
involves differencing: 

•  Calibration, pointing, beam errors è 
leakage of I into Q. 

•  Interferometer: Visibilities measure 
just a given Stokes parameter. 
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E/B separation in interferometry 

Heuristically: 
•  E/B separation is unambiguous in 

Fourier space. 
•  Visibilities live in Fourier space (or its 

vicinity). 
è Maybe they’re better. 
Not so fast: 
•  Most information is in short baselines  
è Beam convolution mixes Fourier modes. 
•  A simple analytic approach gives rough 

guidance about the effects of E/B 
mixing, but you need simulations for 
detailed characterization. 
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QUBIC 
•  Proposed bolometric 

interferometer. 
•  Feedhorns look directly at the 

sky; quasioptical (Fizeau) 
combiner produces “dirty image” 
on focal plane. Can solve for 
visibilities or think of it as an 
imager with a dirty beam. 

•  May combine senstivities of 
bolometers with systematic error 
control of interferometry. 

•  Dome C, Antarctica, 2017. 

(Battistelli et al. 2010, Ghribi et al. 2013) 
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France (APC, Toulouse, Orsay), Italy 
(Rome, Milan, Siena), UK (Manchester), 
Ireland (Maynooth), India (Bangalore) 
USA (Brown, Wisconsin, Richmond),  



Potential advantages 

•  HWP located before telescope à Cross-polarization not 
modulated. 

•  Primary beam determined by feedhorns à small sidelobes. 
•  Synthesized beam can be thoroughly characterized 

(“autocalibration”). 
»  Switch off various combinations of horns. 
»  Get a system of equations that can be solved for all gains, 

couplings, etc. 

•  Regular lattice of horns à Redundantly-measured visibilities, 
coherently summed. (Sensitivity comparable to imager.) 

•  At the very least, errors will be different than with a standard 
imager. 
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Characterizing systematic errors 
•  A simple analytic approach gives a rough idea of how various 

sorts of error cause “leakage” from strong signals to weak (T à 
E à B) (Bunn 2007). 

•  Exact results require simulation. 
•  We* have simulated a QUBIC-like experiment: 

»  Generate visibilities from Gaussian skies. 
»  Estimate power spectra two ways:  

•  Maximum likelihood 
•  Gibbs sampling 

»  Determine power spectrum errors caused by various errors. 
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Who’s “we”? 

•  Brown University (Greg Tucker, Ata Karakci, 
Andrei Korotkov) 

•  University of Wisconsin (Peter Timbie, Le 
Zhang) 

•  UIUC / IAP (Ben Wandelt, Paul Sutter) 
•  U. Richmond (me). 
As usual, the students and postdocs did all the 
actual work. 
(Karakci et al. 2013ab, Zhang et al. 2013, Sutter et al. 2013)  
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Formalism 
Incoming electric 

field 
Signal in an 

antenna 

2x2 matrix-
valued antenna 

pattern 
εin,εout can be defined in either 
linear or circular bases.   

Only one component of εout 
may be measured in a given 
experiment. 
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Visibilities 

2 x 2 matrix of visibilities from 
interfering antennas j,k: 

In an ideal experiment, 
measured visibilities can be 

converted into Stokes 
visibilities: 

• Circular experiment: VQ, VU measured simultaneously. 

•  Linear experiment: Only one Stokes visibility typically 
measured per baseline. (VU  in coordinates aligned with 
baseline). 

.
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Modeling errors 

Error-free experiment: 

 “Instrument errors”: 

 

  “Beam errors”: 

A(r̂) = Ji ·As(r̂)

Ji = 1, As(r̂) = A(r̂)1
Gain 

J(j)
i =

 
1 + g(j)1 ✏(j)1

✏(j)2 1 + g(j)2

!
.

Coupling 

As not proportional to identity matrix (cross-
polarization).  
A varies in shape / pointing from one antenna to 
another (pointing errors, squint, ellipticity, etc.). 
 



Simulations 

•  20 x 20 close-packed array of 
horns with D = 7.89λ. 

•  Observation at 150 GHz from pole. 
•  Gaussian beam with σ = 5o. 
•  Input maps: ΛCDM with r = 0.01. 
•  Average noise per visibility: 0.015 

µK è S/N ~ 5 in Q,U maps. 
•  “Turn on” various systematic 

errors, with amplitudes expected 
via analytical estimates to have 
10% effect on B power recovery. 
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Gibbs sampling 

•  Sample from joint 
probability 
distribution of 
power spectrum, 
signal given data 
P(Cl, s | d). 
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Recovered power spectra 
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Simulation vs. analytical estimation 

Analytical estimation:   
- 1st-order approximation 
- Simpleminded approach to: uv-coverage, sky rotation, ...  
- Off by factors of ~5 -- Better than you might expect! 
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Gibbs sampling –  
not just for cosmologists? 

•  Gibbs sampling gives simultaneous estimates 
of Cl, sky signal. 

•  Cosmologists care about one; astronomers 
care about the other. 

•  Can we use Gibbs sampling to reconstruct 
astronomical images from interferometric 
data? 
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•  Assumptions that go into 
Gibbs sampling are not 
correct for general 
astronomical images: 
things aren’t Gaussian or 
isotropic. 

•  What if we don’t worry 
about that? 

•  Gaussian prior is minimally 
informative / maximum 
entropy, so this can be 
thought of as a data-driven 
approach. 
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Test images 
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Mock observations 

•  Gaussian beam width  
     σb = 0.075 x image width. 
•  12 randomly-placed antennas. 
•  6-hour observation. 
•  Average signal-to-noise = 10. 
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Gibbs vs. CLEAN (1) 
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Gibbs vs. CLEAN (2) 
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Residuals 
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Error comparison 

38 

RMS error Signal-to-noise 

SNR ⌘ 20 log10

✓
�s

�resid

◆



Advantages of Gibbs sampling 

•  Data-driven: minimal input assumptions. 
•  Automatic: No user input required. 
•  Accurate reconstruction in a variety of test 

cases. 
•  Outperforms CLEAN all test cases. 
•  Scalable (slowest step ~ Np log Np). 
•  Gives quantitative error information, based on 

a well-motivated probabilistic model. 
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Summary 

•  CMB polarization is an exciting cosmological frontier. 
•  Interferometric approaches may have advantages in E/B 

separation, systematic error control. 
•  QUBIC, a bolometric interferometer (of sorts) is moving toward 

deployment in 2017. 
•  We have developed an analytic framework and a simulation 

pipeline for CMB interferometric polarimetry. 
•  Gibbs sampling provides a way of estimating both power 

spectrum and sky signal, which may be useful for 
interferometric image reconstruction in other areas of 
astrophysics. 
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Extra stuff 
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WMAP anomalies 

•  Large-scale power 
deficit 

•  North-south 
asymmetry 

•  Alignment of 
multipoles (“axis of 
evil”) 
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Is there anything to explain? 

•  How not to do statistics: 
1.  Notice something strange in your data. 
2.  Devise a statistic a posteriori  to quantify how strange it is. 
3.  Take seriously the p-values derived from that statistic. 

•  All claimed anomalies suffer from this problem to some extent 
è Argument for ignoring the whole subject. 

But… 
•  We use “invalid” statistical methods all the time, relying on 

intuition and further tests to keep us honest. 
•  If these anomalies are real, they’re important! 
•  My unjustified opinion: We should proceed, but with skepticism. 
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Example 

•  A simulated CMB map, made 
in the “usual” way 
(Gaussian, statistically 
isotropic) and smoothed to 
show only large-scale 
features: 

•  The two most extreme hot 
spots are almost perfectly 
antipodal and cause positive 
skewness. 

•  Easy to devise statistics to 
show this is unlikely at > 
99% confidence. 
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Should we care about the 
large-angle anomalies? 

My (unjustified) opinions: 
•  The problem of a posteriori statistics is a reason to 

tread carefully, but not a reason to dismiss the whole 
subject outright. 
»  We use “invalid” statistical methods all the time in science, 

and rely on our intuition to decide whether it’s OK. 

•  The possibility that the CMB is telling us something 
nonstandard about the largest-scale features in the 
Universe is very exciting – worth looking into. 

45 



Lack of large-scale power 

•  Low quadrupole C2  
»  Large cosmic variance + need to mask è 

statistical significance is not strong. 

•  Discrepancy looks much more striking 
when phrased in terms of the real-
space correlation function, instead of 
the spherical harmonic coefficients. 

 
 is low compared to standard model at 
99.8% confidence (Copi et al. 2006). 
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How a posteriori is this? 

•  Specific statistic S1/2 : Very. 
•  Looking at the correlation 

function instead of the power 
spectrum: Not at all. 
»  C(θ) was the standard tool in 

the old days, especially on 
small scales. 

•  My opinion: The fact that C(θ) is 
essentially zero for large angles 
is intriguing. 

 

Smoot et al. 1992 

Alsop et al. 1991 47 



What could it mean? 

•  Possibilities: 
1.  Statistical fluke 
2.  Foreground 
3.  Systematic error 
4.  New physics (topology, …) 

•  Theorem: No independent additive 
contaminant to the standard model 
can explain this anomaly:  

 P(with contaminant) < P(without contaminant) 
 

(Copi et al. 06, Bunn & Bourdon 08) 
 

If a contaminant is 
invoked to explain 

any other problem, it 
worsens this one! 

48 



Alignment of multipoles 

Ø  Maps with l=2,3 pick out approximately 
the same plane on the sky. 

Ø   l=3 map is more planar than expected. 
Ø  Normal to plane lies near ecliptic, CMB 

dipole. 

•  Depending on which of these “surprises” you 
include, formal statistical significance can be p 
~ 0.001. 

•  My unjustified opinion: This is the sort of 
pattern that humans are good at spotting, 
whether or not it’s there. 

H
inshaw

 et al. 2007 
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Possible explanations? 
•  Each anomaly could be due to a fluke, systematic 

error, foreground, or new physics. 
•  Sample possibilities for new physics: 

»  Spontaneous isotropy breaking (Gordon et al.): 
Radiation field couples to some other field, with 
only large-scale fluctuations.  

»  Preferred direction picked out during inflation 
(Ackerman et al.). 
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Do the data justify a more 
complicated model? 

•  Bayesian evidence: One way of 
deciding whether to prefer a 
more complicated theory: 

»  Evidence ratio = Factor by 
which posterior probability 
ratio changes as a result of the 
data. 

»  Complicated theories 
automatically disfavored. 

•  In all cases examined so far, 
BE provides only weak to 
moderate support for the 
nonstandard model. 

Hoftuft et al. 2009 

Zheng & Bunn, 
in prep. 
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So what should we do? 

•  Hard to know how seriously to take any of this! 
•  Solution to the problem of a posteriori statistics: Get 

a new data set, for which the tests are a priori. 
•  Need a data set that probes other perturbation 

modes on ultralarge scales: 
»  CMB polarization 
»  Large-scale structure / 21 cm tomography? 
»  Kamionkowski-Loeb remote quadrupole measurements? 
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Large-scale power deficit in CMB 
polarization 

•  Define a statistic precisely 
analogous to S1/2 for 
polarization maps. 

•        is (nearly) uncorrelated 
with        . è it can be 
regarded as an a priori 
statistic. 

•  If        is anomalously small, 
then something interesting is 
happening. 
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Remote quadrupole measurements 

•  CMB photons scatter in a 
galaxy cluster. 

•  Induced polarization tells 
us the CMB quadrupole at 
the cluster’s location & 
look-back time. 

•  Strength of signal < 1 µK.  
Hard but not impossible. 

•  Lets us measure new 
modes of the radiation 
field on the scales 
corresponding to l ~ 5-10. 

Our LSS 

Us 

Galaxy Cluster 

(Kamionkowski & Loeb 1997; Bunn 2006) 

Cluster LSS 
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Conclusions 

•  Large-angle CMB anomalies don’t “prove” that 
anything nonstandard is going on, but may 
provide hints of places to look for interesting 
phenomena on large scales. 

•  Important to make predictions and choose 
statistics in advance for new data sets, to 
avoid a posteriori statistics. 
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