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FIG. 5. (a) Counts map in the 0.3−100 GeV energy band

of the best fit model for the ROI. This model considered the

conventional 2FGL sources plus an additional extended source

at the central position (see details in Sec. (III A)). Gaussian

smoothing is applied with a kernel size of σ = 0.3◦. The black
circle superposed on the image shows a region dominated by

the Galactic diffuse background that was used to examine

the spectral uncertainties. (b) Fractional residuals, that is

(observed-model)/model, evaluated at eight energy bins in

a circle centered at (l, b) = (+2.3◦, 0◦) with radius of 0.5◦

shown in the above image. The residual data was fitted with

a quadratic function in logarithmic scale as described by the

blue line.

dominant. The regions selected are located in the Galac-

tic plane and special attention was put on not considering

sectors with known 2FGL PSs within them. The frac-

tional residual for each region was calculated in five en-

ergy bands: 0.30−0.50 GeV, 0.50−0.80 GeV, 0.80−1.30

GeV, 1.3−10 GeV and 10−100 GeV. The results obtained

in this step are shown in Fig. (6). It follows that the stan-

dard deviation of the fractional residuals is 11%. We thus

used this value as an estimate of the uncertainties in the

spatial distribution of the Galactic diffuse background

component.

The spectral and spatial uncertainties described above

will be used in Sec. (III C) to estimate the systematic

error in flux of the extended source.

C. Spectral Morphology of the Extended Source

The procedure of obtaining the spectral energy distri-

bution (SED) of the extended source was based on the

method used for the flux band analysis in Ref. [6]. We

started by applying the relaxation method (explained

in Sec. (II)) to the ROI in the full energy range of

0.3−100 GeV. The extended source was modeled with

a NFW(γ = 1.2) map normalized to unity and the spec-

tra with a Log Parabola formula, as defined in Eq. (7).

Once the best fit spectral parameters α(E0) and β have

been found, we calculated the spectral slope of the Log

Parabola at any given energy as

α(E) = α(E0) + 2β log

�
E

E0

�
, (8)

where E0 is the pivot energy [6].

We divided the energy range of the extended source

into 12 energy bands evenly separated in the range

0.3−10 GeV and one energy band from 10 GeV to 100

GeV. Next, the extended source photon fluxes in each

band were computed by freezing the spectral indexes of

all the 2FGL sources to those obtained in the fit over the

full range and fitting the normalizations in each spectral

band. Note that the diffuse galactic and extragalactic

backgrounds were not frozen and neither where the PS

amplitudes. They were optimized along with each band

amplitude. In an initial analysis we had also included a

200−300 MeV band but we found it had a TS of only 0.4,

so we did not include it in our further analysis. Also, the

extended source models generally have a negligible am-

plitude in the 200−300 MeV band compared to Sgr A*.

For each remaining energy band, the GC extended source

spectrum was approximated by a power law function

dN

dE
= N0

�
E

E0

�−Γ

, (9)

where the spectral index Γ in a band was set to the local

spectral slope defined in Eq. (III C), at the logarithmic

mid-point of the band
�

EnEn+1, restricted to be in the

interval [0, 5]. We calculated 2σ upper limits instead of

actual fluxes for those bands with either a Test Statistics

TS < 10 or relative uncertainty on the flux ∆Fi/Fi >
0.5.
Systematic errors due to uncertainties in the Galac-

tic diffuse background model were evaluated by modify-

ing the model file gal−2yearp7v6−v0.fits in the band

analysis. This was done differently for spectral and spa-

tial uncertainties:

Gordon and Macias 
(2013)



Fermi Bubbles
1. less uncertainties compared with Galactic Centre
2. latitude-dependent spectrum ( Hooper and Slatyer)
3. Hooper and Cholis, etc. Pulsar can not account for the GeV 
excess
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shown in Fig. 3. In each one of these slices, and in each energy bin, we compute the
difference

Res =
�

i

CountMap|i −
�

i

[(a0 ·DiffuseModel|i + b0) · ExposureMap|i · px ·∆Eγ] ,

(2.4)
where the sum runs over the unmasked pixels of the analyzed region. Eq. (2.4) represents
the residual number of photons after background subtraction. Dividing by the total
exposure times pixel solid angle and energy width, we obtain the differential flux of the
Fermi bubbles (dΦ/dEγdΩ, energy spectrum in units of photons GeV−1 cm−2 s−1 sr−1).
The error bars on the residual value in Eq. (2.4) are the statistical errors.

Figure 2: Observed gamma-ray sky after subtraction of the Galactic diffuse model and

isotropic extragalactic component. We show front-converting events in the energy interval

Eγ = 3− 3.7 GeV. The Fermi bubbles clearly stand out.

2.3 The latitude-dependent energy spectrum of the Fermi bubbles

2.3.1 On the relevance of the latitude-dependent approach

In this Subsection, we stress the importance of the latitude-dependent approach. The aim of
our analysis is to look for the hint of a DM component in the residual energy spectrum at the
Fermi bubble region. The DM annihilation produces gamma-rays both by electromagnetic
Final State Radiation (FSR) and by ICS on the ambient light. The differential flux of FSR
photons from the angular direction dΩ is given by [18, 19]

dΦ

dEγdΩ
=

r⊙
8π

�
ρ⊙

MDM

�2

J
�

f

�σv�f
dN f

γ

dEγ
, J(θ) =

�

l.o.s.

ds

r⊙

�
ρDM(r(s, θ))

ρ⊙

�2
, (2.5)
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1. Decay of π0 ( cosmic-ray protons 
striking on Interstellar medium )  

2. Bremsstrahlung (fast moving electron 
scattering on the gas)

3. ICS from CR electrons scattering with 
ISRF

4. Extended Source &Point Source

6. Fermi Bubbles  
    

6

Background                    

FIG. 2: The π0 and dark matter annihilation contribution for five propagation models.
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I. INTRODUCTION

FIG. 1: The inverse compton and bremstraulung for five propagation models.
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I. INTRODUCTION

FIG. 1: The inverse compton and bremstraulung for five propagation models.
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Residual Maps
1. Event data, Exposure data and Diffuse map

2. Mask Rectangular region covering Fermi Bubbles

3. Mask the point sources and extended sources
    radius r95( E)  95% flux containment ( Assume a Gaussian                    
   distribution)

4. Mask the inner disk |b| < 1o, | l | < 60o

5. Smooth the maps to the same kernel in order to compare 
   different maps properly
    fkernel = Sqrt( ftarget^2 - fraw^2)
    
6.
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Count Maps

8

1. Pass7 ( V6) 
2. ULTRACLEAN, but SOURCE and CLEAN are tested
3. different zenith angle cut are tested
3. Fermi tools: gtselect, gtmktime
    



Fermi Bubbles
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Fermi Bubbles Template

10

30 20 10 0 �10 �20 �30

�50

�40

�30

�20

�10

0

10

20

30

40

50

l �deg.�

b
�deg.�

1

2

3

4

5

1

2

3

4

5

5

5

10

30

30 20 10 0 �10 �20 �30

�50

�40

�30

�20

�10

0

10

20

30

40

50

l �deg.�

b
�deg.�

100

Figure 3: Fermi bubbles region. The edges of the bubbles follow the (l, b) coordinates of the
template defined in Ref. [8]. As in Ref. [13], we slice the bubbles in 5 regions of different
latitude, |b| = 1◦ − 10◦, . . . , |b| = 40◦ − 50◦, labelled as 1, . . . , 5 (left panel). In each slice the
region inside the Fermi bubbles (red shadow) is used to get the residual energy spectra. In the
right panel we also show the contours of constant J factor, defined in Eq. (2.5), using the
generalized NFW profile in Eq. (2.6).

where MDM is the DM mass, ρ⊙ = 0.4 GeV/cm3 is the density of DM at the location of

the Sun r⊙ = 8.33 kpc, and dN f
γ /dEγ is the number of photon per unit energy per DM

annihilation with final state f and thermal averaged cross section �σv�f .4 The J factor in

Eq. (2.5) is obtained by integrating the square of the normalized annihilating DM density

over the line of sight (l.o.s.), where s is the distance between the Earth and the point of

interest and the spherical radial coordinate r, centered at the Galactic center, is given by

r(s, θ) = (r2⊙ + s2 − 2sr⊙ cos θ)1/2 in which θ is the angle between the l.o.s. and the axis

connecting the Earth with the Galactic center. The J factor clearly depends on the DM

density distribution ρDM(r). On the other hand, the density profile of the DM in the Milky

Way galaxy is not well understood. Even if numerical N-body simulation seems to favor a

distribution peaking toward the center, the inclusion of baryons may overturn this conclusion

in favor of a density distribution described by an isothermal sphere [20, 21]. For illustration,

4We consider here the annihilation of self-conjugate/Majorana DM particles.
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Latitude-dependence
|b| = 1o − 10o. The spectrum is flat up to energies Eγ ∼ 5 GeV, 
thereafter it starts to decrease; at energies larger than 10 GeV the signal 
is swamped by large statistical uncertainties. 

11



Latitude-dependence
|b| = 10o − 20o. The spectrum is clear shows a bump peaked around 
Eγ ∼ 1 - 4 GeV. 
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Latitude-dependence
|b| = 20o − 50o. The spectrum presents a flattish behaviour.
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Inverse Compton Scattering
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but the first one, |b| = 1◦− 10◦, because of the large astrophysical uncertainties mentioned in
Section 2.3.2. We perform a χ2 analysis, and the procedure goes as follows.

First, we fit the data considering both ICS photons and FSR from DM annihilation. The
former is given by Eq. (3.1) as previously discussed, while the latter follows from Eq. (2.5).
We use the generalized NFW profile in Eq. (2.6). We keep the ICS spectral shape universal
within the region of the whole Fermi bubbles, where we assume a power-law spectrum with
a cut-off energy, Ecut, at 1.2 TeV. In each slice we vary the individual normalization of the
electron density, the DM mass MDM and the annihilation cross section �σv�. This means that
we use 7 parameters to fit the data.

Figure 8: Analysis of the energy spectrum of the Fermi bubbles in the four slices from
|b| = 10◦−20◦ to |b| = 40◦−50◦. The solid line represents the best-fit result obtained combining
ICS and FSR from DM annihilation into bb. The dashed line retraces the ICS component,
highlighting the role of the DM contribution in particular in the first slice, |b| = 10◦ − 20◦,
where a bump at Eγ ∼ 1 − 4 GeV clearly arises. We also show the best-fit result obtained
considering only ICS without DM (dotted line).

16
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Second, we repeat the same procedure but considering only the ICS photons. By com-
paring the results of the two χ2 analysis, we shall see that in the second case the fit is much
worse, thus confirming the the reliability of our assumptions.

In Fig. 8 we show the fitting results for each slice. We find χ2
min/d.o.f. = 110.9/109 for

the combination of DM and ICS, and χ2
min/d.o.f. = 213.4/109 for ICS only. It is therefore

very clear that the combination of ICS and DM can account for the whole energy spectrum
of the Fermi bubbles much better than ICS only. In particular at high latitudes, where the
DM contribution is small, the ICS component is dominant and can fit the flattish spectrum of
the Fermi bubbles. At low latitudes, especially for |b| = 10◦− 20◦, ICS can not reproduce the
bump at Eγ ∼ 1− 4 GeV. Notice, moreover, that our best-fit value for the spectral index of
the power-law describing the spectrum of the electron population generating ICS photons is
γ = −2.39. This number is in agreement with the typical values able to explain the WMAP
haze observed in the microwave [10, 11].

Generalizing the procedure described above, we study the interplay between ICS and FSR
considering different final state. In Fig. 9 we focus on the DM component, showing the 65%
and 99% confidence regions for annihilating DM (left panel) and decaying DM (right panel).
We perform a two-dimensional fit in the plane (MDM, �σv�), marginalizing over the remaining
parameters. Final states involving τ+τ− have a harder FSR photon spectrum and in turn
prefer a lower DM mass and smaller annihilation cross section for the annihilation DM and
a smaller decay width for the decaying DM. The χ2s are similar among different final states.
Besides, by virtue of the feature of concentration of the gamma ray excess toward the Galactic
center, the annihilation DM is by far preferred over the decaying DM; for example, in terms of
the b-quark final states, χ2

min/d.o.f. = 110.9/109 for annihilation but χ2
min/d.o.f. = 138.4/109

for decay.
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Figure 9: Confidence regions (99% C.L. and 68% C.L.) for the annihilating (left panel) and
decaying (right panel) DM component in the analysis of the Fermi bubbles spectrum (see text
for details).
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Chi-square fit

In Table 1 we summarize the best-fit values for MDM and �σv�, together with the cor-

responding 1-σ errors, considering DM annihilation into bb, cc, qq and τ+τ−. Our best-fit

candidate corresponds to annihilation into bb with mass MDM = 61.8+6.9
−4.9 GeV and cross sec-

tion �σv� = 3.30+0.69
−0.49×10−26 cm3 s−1. Other final states, e.g. annihilation into W+W−, e+e−,

µ+µ−, give worse results.

Let us close this Section with a discussion of the DM profile dependence. Throughout this

analysis, in fact, we made use of the gNFW profile as a benchmark model for the DM density

distribution. It is interesting to notice that our results do not show a strong dependence on

this choice. This happens because different profiles are actually similar at latitudes |b| > 10◦

(see Fig. 10), thus leading to mild quantitative differences. To be more precise, the best-fit

candidate for the NFW profile is for annihilation into bb with MDM = 61.8 GeV, �σv� =

4.7 × 10−26 cm3 s−1 and χ2
min/d.o.f. = 115.4/109. The larger �σv� for NFW results from a

smaller J factor for |b| = 10◦ − 20◦, which is the most important region in terms of the DM

component.

Table 1: DM contribution to the fit of the Fermi bubbles energy spectrum. In correspon-
dence of each channel we show the best-fit values for mass and cross section together with the
corresponding 1-σ errors and the ratio χ2

min/d.o.f..

DM annihilation MDM [GeV ] �σv� [cm3s−1] χ2
min/d.o.f.

bb 61.8+6.9
−4.9 3.30+0.69

−0.49 × 10−26 110.9/109

cc 29.3+2.4
−3.4 1.54+0.26

−0.30 × 10−26 112.7/109

qq 32.0+2.6
−3.8 1.73+0.30

−0.30 × 10−26 111.9/109

τ+τ− 10.6+0.5
−0.6 5.63+0.58

−0.64 × 10−27 120.6/109

4 Dark Matter bounds from the Fermi bubbles

Indirect contraints on the DM thermal averaged annihilation cross section, �σv�, are derived

from the LAT observations of the Galactic ridge [28], Galactic center [29, 6], Dwarf galax-

ies [30, 31, 32], isotropic diffuse gamma-ray background [33], and galaxy clusters [34]. In this

Section, we derive upper limit on the DM cross section using the latitude-dependent energy

spectrum of the Fermi bubbles obtained in Section 2. We consider different annihilation chan-

nels as well as different DM density profiles, comparing our results with those obtained from

the Galactic center and Dwarf galaxies.

The annihilation of DM particles can contribute to the gamma-ray flux both through FSR

from SM final states and through ICS on the low energy background photons in the ISRF.

FSR has smaller uncertainty than ICS photon, since ICS not only relies on the DM density

profile and annihilation channels, but also on the diffuse model and the ISRF. For this reason,

we only focus on FSR constraints.

18



Final State Radiation
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Figure 12: Comparison between the bounds on the DM annihilation cross section obtained in
this work analyzing the energy spectrum of the Fermi bubbles and the existing literature. The
solid black line corresponds to this work. The constraints from Dwarf galaxies [31] are shown
in dashed red line while the Galactic center results [29] are in dotted blue line.

all the mass range, our constraints from the Fermi bubbles are stronger than those from the

Dwarf galaxies in Ref. [31]. In the low mass region for the bb final state (MDM < 30 GeV)

and in the high mass region for the τ+τ− final state (MDM > 100 GeV), the bounds of this

work are stronger than those coming from the Galactic centre in Ref. [29].

5 Conclusions

Notwithstanding its elusive and photophobic nature, the possibility to hunt for DM in the

sky via gamma rays is promising.

In this paper we have analyzed the energy spectrum of the Fermi bubbles, two giant

gamma-ray lobes extending northward and southward from the Galactic center, at different
latitudes. Our main results can be summarized as follows.
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Summary

1. The spectrum is latitude dependent

2. 1 GeV excess on Fermi bubbles photon spectrum

3. Derive conservative but stringent bound on DM annihliation

17



1. The thermal relic observed by CMB requires that DM 
annihilation cross section 3.0 ×10-26 cm3s-1

2. Direct Detection constrains the DM-nucleon cross 
section 10-44cm2 at 50 GeV

3. Dark Matter indirect detection:
    Fermi LAT gamma ray all sky 
    

18
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Effective Field Requirement

1. Fit Fermi Bubbles latitude-dependent Spectrum

2. Thermal Relic

3. Viable from the Direct Detection limits ( XENON)

4. Validity of EFT  , cutoff cannot be too small

19

Finally, it is worthwhile to comment on the reliability of the effective field theory ap-

proach. Considering for definiteness the bb̄ final state, in fact, we note that the best-fit

value of the pseudoscalar coupling Gb
PS ∼ 6 · 10−7

GeV
−3

leads to a naive estimation

of the cut-off Λ ∼ (Gb
PS)

−1/3 ∼ 120 GeV; since we find Mχ ∼ 57 GeV as the best-fit

value of the DM mass, we argue that the effective field theory approach based on the

assumptions enumerated in Section 3 might not be, in this specific case, trustable. The

quantitative estimate of the validity of the effective approach can be characterized by

the ratio s/Λ2
, resulting from the expansion

1

s− Λ2
= − 1

Λ2
− s

Λ4
+O(s2) , (3.10)

where
√
s � 2Mχ. This parameter corresponds to the error related to the first order

approximation in the limit of s � Λ. We collect these values in the last column of Ta-

ble 1.
5
For the bb̄ final state previously discussed one finds s/Λ2 ∼ 78.5%. We consider

the effective operator approach as a good approximation whenever s/Λ2 < 10%. This

criterium disfavors the effective theory description of annihilations via pseudoscalar op-

erators into bb̄ and cc̄.
The pseudoscalar interaction can also describe DM annihilation in case of Majorana

particles. However it is straightforward to realize that, both for the computation of the

relic density and the photon flux, the two cases only differ for a numerical factor. In

particular it follows that

h2ΩDM

��
Majorana

= h2ΩDM

��
Dirac

× 1/8 , (3.11)

dΦ/dΩdEγ|Majorana = dΦ/dΩdEγ|Dirac × 8 . (3.12)

Seeing as h2ΩDM ∼ 1/�σv� and dΦ/dΩdEγ ∼ �σv�, it turns out that in order to re-

produce the correct amount of relic density and the Fermi bubbles signal a coupling

8 times smaller is required in case of annihilation of Majorana DM if compared with

the situation illustrated in the left panel of Fig. 2 for Dirac DM. As a consequence the

tension observed between the correct relic density contour and the best-fit region for

the Fermi bubbles signal in correspondence of cc and τ+τ− final states still survives

in case of Majorana DM, while for bb final state a good agreement is again achieved.

The only difference involves the ratio s/Λ2
that for Majorana DM may be significantly

smaller, given the smaller (larger) value of the coupling (effective scale Λ). Considering
pseudoscalar annihilation into bb, however, we find s/Λ2 ∼ 39.2%, still too large to

validate the effective field theory description.

In conclusion, we argue that an effective field theory description of DM annihilation

based on a pseudoscalar operator fails to explain the Fermi bubbles DM signal without

be at odds with our selection criteria.

5It is clear from Table 1 that τ always has small s/Λ2 in that τ produces the hardest FSR photon spectrum
that makes smaller both best-fit Mχ and σv. It in turn implies larger Λ and smaller s/Λ2(∼ 4M2

χ/Λ
2).

8



Effective Field Approach
1. Hidden Sector × Standard Model Sector

2. Neglect heavy final state ( W, Z bosons and Higgs boson)

3. CP Violation :  FSA FVSA FA  FTA
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Figure 4: Region of the parameter space [Mχ, G
f
V] excluded at 90% C.L. by the XENON100

experiment [6] (red region). We show bb final state (left panel), cc final state (central panel)

and τ+τ− final state (right panel) in correspondence of the vector operator in Eq. (3.6).

Elastic cross sections are evaluated at one-loop (see text for details and Appendix A.2 for the

analytical expressions). For each case we also show the confidence regions obtained from the

fit of the Fermi bubbles signal, and the contour reproducing the correct amount of relic density

observed today (see the right panel of Fig. 2 and the corresponding caption).

3.2 Complex scalar Dark Matter

In this section, we study the scalar DM, which has the structure

O
i
φ =

�
φ̄φ, ∂µφ̄∂

µφ, φ̄
↔
∂µφ, ∂µφ̄∂νφ

�
(3.14)

Similar to the fermionic DM, the effective operator in full generality is written as

Scalar : O
s
S ≡ mf√

2
φ̄φ f̄

�
F s
S + F s

SAγ
5
�
f , (3.15)

Vectorscalar : O
s
VS ≡ mf√

2
∂µφ̄∂

µφ f̄
�
F s
VS + F s

VSAγ
5
�
f , (3.16)

Vector : O
s
V ≡ 1√

2
φ̄
↔
∂µφ f̄γµ

�
F s
V + F s

Aγ
5
�
f , (3.17)

Tensor : O
s
T ≡ mf√

2
∂µφ̄∂νφ f̄σµν

�
F s
T + F s

TAγ
5
�
f , (3.18)

in which all the terms with γ5
is CP-violating. How to define

↔
∂ =

→
∂ −

←
∂?

13



21



22

1. ττ, cc does not have the right thermal relic
2. bb is ruled out by direct detection. Also, it does not 
give reliable EFT description.
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Figure 4: Region of the parameter space [Mχ, G
f
V] excluded at 90% C.L. by the XENON100

experiment [6] (red region). We show bb final state (left panel), cc final state (central panel)

and τ+τ− final state (right panel) in correspondence of the vector operator in Eq. (3.6).

Elastic cross sections are evaluated at one-loop (see text for details and Appendix A.4 for the

analytical expressions). For each case we also show the confidence regions obtained from the

fit of the Fermi bubbles signal, and the contour reproducing the correct amount of relic density

observed today (see the right panel of Fig. 2 and the corresponding caption).

Similar to the fermionic DM, the effective operators in full generality can be written as

Scalar : O
s
S ≡ mf√

2
φ̄φ f̄

�
F s
S + F s

SAγ
5
�
f , (3.15)

Vectorscalar : O
s
VS ≡ mf√

2
∂µφ̄∂

µφ f̄
�
F s
VS + F s

VSAγ
5
�
f , (3.16)

Vector : O
s
V ≡ i√

2
φ̄
↔
∂µφ f̄γµ

�
F s
V + F s

Aγ
5
�
f , (3.17)

Tensor : O
s
T ≡ mf√

2
∂[µφ̄∂ν]φ f̄σµν

�
F s
T + F s

TAγ
5
�
f , (3.18)

where the antisymmetric combination ∂[µφ̄∂ν]φ ≡ ∂µφ̄∂νφ − ∂νφ̄∂µφ preserves hermiticity.

Notice, moreover, that all the terms with γ5
are CP-violating.

We analyze these operators following the same criteria already adopted for the fermionic

case.

4 Towards concrete realizations

In this Section, we will examine some of models to see if the Fermi bubbles can be real-

ized or not. We split them into three categories: 1) Higss exchange, 2) Z/Z �
exchange 3)

supersymmetric Z- and Higgs-resonance.

13



Singlet Scalar Dark Matter
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Therefore,

fN =
2

9
+

7

9

�

Q=u,d,s

fQ . (3.28)

In the past one of the main uncerntainties of the DM-nucleon scattering is due to the not-well

measured strange quark matrix element. Thanks to the development of lattice analysis, fu,d,s

has less uncertainties. We choose the following value for Matrix elements calculation.

fu = 0.024, fd = 0.034, fs = 0.046 . (3.29)

Notice that in the effective operators coupling to light quarks, we use fs as the example to

analyze the DM sector coupling to light quarks. By combining eq. (3.28) and eq. (3.29),

fN = 0.303.

• Scalar operator Os
S. The spin-indepent DM-nucleon cross section is given as

σS
SI =

(
�

Q fQ)
2
F

2
Sµ

2

8πM2
φ

, (3.30)

where µ = mNMφ/(mN + Mφ) is the DM-nucleon reduced mass. The VectorScalar

operator are the same as the scalar operater up to a constant factor M
4
φ. I will delete

VectorScalar soon.

• Vector operator Os
V . There is no uncertainties as the scalar operator, since the sea

quark and gluons cannot contribute to spin-independend DD. If the operator contains

up or down quark, the cross section to proton and to neutron are given by,

σS
p,n =

F
2
V p,nµ

2

8πM2
φ

, (3.31)

FV,p =
�
2F

s
V,u + F

s
V,d

�
, FV,n =

�
F

s
V,u + 2F

s
V,d

�
(3.32)

4 Towards concrete realizations

In this Section, we will examine some of models to see if the Fermi bubbles can be real-

ized or not. We split them into three categories: 1) Higss exchange, 2) Z/Z
�
exchange 3)

supersymmetric Z- and Higgs-resonance.

4.1 Higgs exchange

In this Section we add to the SM Lagrangian the following piece [9, 10, 11]

LS =
1

2
(∂µS)(∂

µ
S)− 1

2
µ
2
SS

2 − 1

2
λS2

|H|
2
, (4.1)
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1. Red Direct Detection

2. Green Thermal Relic

3. Blue Fermi Bubble

4. < 60 GeV. invisible Higgs
    decay

5. 62.5 GeV < mS < 65 GeV

    



Fermions (EFT)
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where DM χ can be either Majorana or Dirac except for the vector and tensor case, in which

only the Dirac DM is present. From the SM side, we couple Oi
χ with gauge invariant SM

currents. Considering for definiteness the vector-like interaction χ̄Γµχ, this means that we

take

O
µ
SM,V =

Gf
V,L√
2
(f̄1,L f̄2,L)γ

µ

�
f1,L
f2,L

�
+

Gf1
V,R√
2
f̄1,Rγ

µf1,R +
Gf2

V,R√
2
f̄2,Rγ

µf2,R

=
1√
2

�

i=1,2

f̄iγ
µ
�
Gfi

V +Gfi
Aγ

5
�
fi , (3.3)

where Gfi
V ≡ (Gf

V,L + Gfi
V,R)/2, G

fi
A ≡ (−Gf

V,L + Gfi
V,R)/2. In Eq. (3.3) (f1,L f2,L)T is the SM

SU(2)L doublet, while fi,R are the correspondent singlets. All in all we find in full generality

Scalar : O
f
S ≡ mf√

2
χ̄χ f̄

�
Gf

S +Gf
SAγ

5
�
f , (3.4)

Pseudoscalar : O
f
PS ≡ mf√

2
χ̄γ5χ f̄

�
Gf

P +Gf
PAγ

5
�
f , (3.5)

Vector : O
f
V ≡ 1√

2
χ̄γµχ f̄γµ

�
Gf

V +Gf
Aγ

5
�
f , (3.6)

Pseudovector : O
f
PV ≡ 1√

2
χ̄γµγ5χ f̄γµ

�
Gf

PV +Gf
PAγ

5
�
f , (3.7)

Tensor : O
f
T ≡ mf√

2
χ̄σµνχ f̄σµν

�
Gf

T +Gf
TAγ

5
�
f , (3.8)

where σµν ≡ i[γµ, γν
]/2. Notice that effective operators with Gf

SA in Eq. (3.4), Gf
P in Eq. (3.5)

and Gf
TA in Eq. (3.8) are CP-violating.

4
In absence of CP violation in the DM sector, these

operators are zero. We, nevertheless, include them in our analysis because of lack of knowledge

in the DM sector. The mass insertion in Eqs. (3.4, 3.5, 3.8) manifests the involvement of the

Higgs doublet to break the chiral symmetry without violating the gauge symmetry, like SM

Yukawa couplings.

Analyzing the operators one by one, we conduct our study following the lead of four

criteria.

1. Computing the gamma-ray flux as explained in Section 2, the analyzed operator must

reproduce the Fermi bubbles signal. A chi-square statistic is used to investigate this

point.

2. Solving the Boltzmann equation, we request to reproduce the correct amount of DM

relic density. Note that if the value of the DM coupling leading to the correct relic

4In Eq. (3.8) we have the following CP transformation property

O
5
µν ≡ f̄

i

2
(γµγν − γνγµ)γ

5f
CP
=⇒ (−1)µ(−1)νO5

µν , (3.9)

where (−1)0 = 1 and (−1)i = −1 for i = 1, 2, 3.

5



Scalar Operator

1. Annihilation cross section is mass suppressed

2. Annihilation cross section is p-wave ( velocity suppressed)
     < σ v> = a + b v2

    
3. Due to p-wave, there is no indirect detection signal ( v~ 10-3)
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where DM χ can be either Majorana or Dirac except for the vector and tensor case, in which

only the Dirac DM is present. From the SM side, we couple Oi
χ with gauge invariant SM

currents. Considering for definiteness the vector-like interaction χ̄Γµχ, this means that we

take

O
µ
SM,V =

Gf
V,L√
2
(f̄1,L f̄2,L)γ

µ

�
f1,L
f2,L

�
+

Gf1
V,R√
2
f̄1,Rγ

µf1,R +
Gf2

V,R√
2
f̄2,Rγ

µf2,R

=
1√
2

�

i=1,2

f̄iγ
µ
�
Gfi

V +Gfi
Aγ

5
�
fi , (3.3)

where Gfi
V ≡ (Gf

V,L + Gfi
V,R)/2, G

fi
A ≡ (−Gf

V,L + Gfi
V,R)/2. In Eq. (3.3) (f1,L f2,L)T is the SM

SU(2)L doublet, while fi,R are the correspondent singlets. All in all we find in full generality

Scalar : O
f
S ≡ mf√

2
χ̄χ f̄

�
Gf

S +Gf
SAγ

5
�
f , (3.4)

Pseudoscalar : O
f
PS ≡ mf√

2
χ̄γ5χ f̄

�
Gf

P +Gf
PAγ

5
�
f , (3.5)

Vector : O
f
V ≡ 1√

2
χ̄γµχ f̄γµ

�
Gf

V +Gf
Aγ

5
�
f , (3.6)

Pseudovector : O
f
PV ≡ 1√

2
χ̄γµγ5χ f̄γµ

�
Gf

PV +Gf
PAγ

5
�
f , (3.7)

Tensor : O
f
T ≡ mf√

2
χ̄σµνχ f̄σµν

�
Gf

T +Gf
TAγ

5
�
f , (3.8)

where σµν ≡ i[γµ, γν
]/2. Notice that effective operators with Gf

SA in Eq. (3.4), Gf
P in Eq. (3.5)

and Gf
TA in Eq. (3.8) are CP-violating.

4
In absence of CP violation in the DM sector, these

operators are zero. We, nevertheless, include them in our analysis because of lack of knowledge

in the DM sector. The mass insertion in Eqs. (3.4, 3.5, 3.8) manifests the involvement of the

Higgs doublet to break the chiral symmetry without violating the gauge symmetry, like SM

Yukawa couplings.

Analyzing the operators one by one, we conduct our study following the lead of four

criteria.

1. Computing the gamma-ray flux as explained in Section 2, the analyzed operator must

reproduce the Fermi bubbles signal. A chi-square statistic is used to investigate this

point.

2. Solving the Boltzmann equation, we request to reproduce the correct amount of DM

relic density. Note that if the value of the DM coupling leading to the correct relic

4In Eq. (3.8) we have the following CP transformation property

O
5
µν ≡ f̄

i

2
(γµγν − γνγµ)γ

5f
CP
=⇒ (−1)µ(−1)νO5

µν , (3.9)

where (−1)0 = 1 and (−1)i = −1 for i = 1, 2, 3.

5



PseudoScalar Operator

1. Annihilation cross section is mass 
suppressed, but not velocity suppressed

2.DM-nucleus scattering is proportional 
to S . q ,momentum suppression

3. b b final state, Λ ~ ( GPS) -1/3 ~120 
GeV, S / Λ2 ~ 78.5 %

4. Majorana Dark Matter cannot solve 
the EFT tension
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where DM χ can be either Majorana or Dirac except for the vector and tensor case, in which

only the Dirac DM is present. From the SM side, we couple Oi
χ with gauge invariant SM

currents. Considering for definiteness the vector-like interaction χ̄Γµχ, this means that we

take

O
µ
SM,V =

Gf
V,L√
2
(f̄1,L f̄2,L)γ

µ

�
f1,L
f2,L

�
+

Gf1
V,R√
2
f̄1,Rγ

µf1,R +
Gf2

V,R√
2
f̄2,Rγ

µf2,R

=
1√
2

�

i=1,2

f̄iγ
µ
�
Gfi

V +Gfi
Aγ

5
�
fi , (3.3)

where Gfi
V ≡ (Gf

V,L + Gfi
V,R)/2, G

fi
A ≡ (−Gf

V,L + Gfi
V,R)/2. In Eq. (3.3) (f1,L f2,L)T is the SM

SU(2)L doublet, while fi,R are the correspondent singlets. All in all we find in full generality

Scalar : O
f
S ≡ mf√

2
χ̄χ f̄

�
Gf

S +Gf
SAγ

5
�
f , (3.4)

Pseudoscalar : O
f
PS ≡ mf√

2
χ̄γ5χ f̄

�
Gf

P +Gf
PAγ

5
�
f , (3.5)

Vector : O
f
V ≡ 1√

2
χ̄γµχ f̄γµ

�
Gf

V +Gf
Aγ

5
�
f , (3.6)

Pseudovector : O
f
PV ≡ 1√

2
χ̄γµγ5χ f̄γµ

�
Gf

PV +Gf
PAγ

5
�
f , (3.7)

Tensor : O
f
T ≡ mf√

2
χ̄σµνχ f̄σµν

�
Gf

T +Gf
TAγ

5
�
f , (3.8)

where σµν ≡ i[γµ, γν
]/2. Notice that effective operators with Gf

SA in Eq. (3.4), Gf
P in Eq. (3.5)

and Gf
TA in Eq. (3.8) are CP-violating.

4
In absence of CP violation in the DM sector, these

operators are zero. We, nevertheless, include them in our analysis because of lack of knowledge

in the DM sector. The mass insertion in Eqs. (3.4, 3.5, 3.8) manifests the involvement of the

Higgs doublet to break the chiral symmetry without violating the gauge symmetry, like SM

Yukawa couplings.

Analyzing the operators one by one, we conduct our study following the lead of four

criteria.

1. Computing the gamma-ray flux as explained in Section 2, the analyzed operator must

reproduce the Fermi bubbles signal. A chi-square statistic is used to investigate this

point.

2. Solving the Boltzmann equation, we request to reproduce the correct amount of DM

relic density. Note that if the value of the DM coupling leading to the correct relic

4In Eq. (3.8) we have the following CP transformation property

O
5
µν ≡ f̄

i

2
(γµγν − γνγµ)γ

5f
CP
=⇒ (−1)µ(−1)νO5

µν , (3.9)

where (−1)0 = 1 and (−1)i = −1 for i = 1, 2, 3.
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Figure 2: Chi-square results (68% C.L., darker region; 99% C.L., lighter region) for the
fit of the Fermi bubbles signal in the plane [Mχ, G

f
i ]. The color code follows Fig. 1. We

superimpose the contours reproducing the correct amount of relic abundance. This calculation
does not depend on the mass of the fermions in the final state, thus we plot one single orange
line for annihilation into bb̄, cc̄ and qq̄. Final state involving τ+τ− differs because of the
absence of the color factor. Left panel: Pseudoscalar operator. Right panel: Vector operator.
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Finally, it is worthwhile to comment on the reliability of the effective field theory ap-

proach. Considering for definiteness the bb̄ final state, in fact, we note that the best-fit

value of the pseudoscalar coupling Gb
PS ∼ 6 · 10−7

GeV
−3

leads to a naive estimation

of the cut-off Λ ∼ (Gb
PS)

−1/3 ∼ 120 GeV; since we find Mχ ∼ 57 GeV as the best-fit

value of the DM mass, we argue that the effective field theory approach based on the

assumptions enumerated in Section 3 might not be, in this specific case, trustable. The

quantitative estimate of the validity of the effective approach can be characterized by

the ratio s/Λ2
, resulting from the expansion

1

s− Λ2
= − 1

Λ2
− s

Λ4
+O(s2) , (3.10)

where
√
s � 2Mχ. This parameter corresponds to the error related to the first order

approximation in the limit of s � Λ. We collect these values in the last column of Ta-

ble 1.
5
For the bb̄ final state previously discussed one finds s/Λ2 ∼ 78.5%. We consider

the effective operator approach as a good approximation whenever s/Λ2 < 10%. This

criterium disfavors the effective theory description of annihilations via pseudoscalar op-

erators into bb̄ and cc̄.
The pseudoscalar interaction can also describe DM annihilation in case of Majorana

particles. However it is straightforward to realize that, both for the computation of the

relic density and the photon flux, the two cases only differ for a numerical factor. In

particular it follows that

h2ΩDM

��
Majorana

= h2ΩDM

��
Dirac

× 1/8 , (3.11)

dΦ/dΩdEγ|Majorana = dΦ/dΩdEγ|Dirac × 8 . (3.12)

Seeing as h2ΩDM ∼ 1/�σv� and dΦ/dΩdEγ ∼ �σv�, it turns out that in order to re-

produce the correct amount of relic density and the Fermi bubbles signal a coupling

8 times smaller is required in case of annihilation of Majorana DM if compared with

the situation illustrated in the left panel of Fig. 2 for Dirac DM. As a consequence the

tension observed between the correct relic density contour and the best-fit region for

the Fermi bubbles signal in correspondence of cc and τ+τ− final states still survives

in case of Majorana DM, while for bb final state a good agreement is again achieved.

The only difference involves the ratio s/Λ2
that for Majorana DM may be significantly

smaller, given the smaller (larger) value of the coupling (effective scale Λ). Considering
pseudoscalar annihilation into bb, however, we find s/Λ2 ∼ 39.2%, still too large to

validate the effective field theory description.

In conclusion, we argue that an effective field theory description of DM annihilation

based on a pseudoscalar operator fails to explain the Fermi bubbles DM signal without

be at odds with our selection criteria.

5It is clear from Table 1 that τ always has small s/Λ2 in that τ produces the hardest FSR photon spectrum
that makes smaller both best-fit Mχ and σv. It in turn implies larger Λ and smaller s/Λ2(∼ 4M2

χ/Λ
2).
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Vector Operator

1. s-wave

2.DM-nucleus scattering 1

3. b b final state, Λ ~ ( GPS) -1/3 ~760 
GeV,   S / Λ2 ~ 1.9 %

27

where DM χ can be either Majorana or Dirac except for the vector and tensor case, in which

only the Dirac DM is present. From the SM side, we couple Oi
χ with gauge invariant SM

currents. Considering for definiteness the vector-like interaction χ̄Γµχ, this means that we

take

O
µ
SM,V =

Gf
V,L√
2
(f̄1,L f̄2,L)γ

µ

�
f1,L
f2,L

�
+

Gf1
V,R√
2
f̄1,Rγ

µf1,R +
Gf2

V,R√
2
f̄2,Rγ

µf2,R

=
1√
2

�

i=1,2

f̄iγ
µ
�
Gfi

V +Gfi
Aγ

5
�
fi , (3.3)

where Gfi
V ≡ (Gf

V,L + Gfi
V,R)/2, G

fi
A ≡ (−Gf

V,L + Gfi
V,R)/2. In Eq. (3.3) (f1,L f2,L)T is the SM

SU(2)L doublet, while fi,R are the correspondent singlets. All in all we find in full generality

Scalar : O
f
S ≡ mf√

2
χ̄χ f̄

�
Gf

S +Gf
SAγ

5
�
f , (3.4)

Pseudoscalar : O
f
PS ≡ mf√

2
χ̄γ5χ f̄

�
Gf

P +Gf
PAγ

5
�
f , (3.5)

Vector : O
f
V ≡ 1√

2
χ̄γµχ f̄γµ

�
Gf

V +Gf
Aγ

5
�
f , (3.6)

Pseudovector : O
f
PV ≡ 1√

2
χ̄γµγ5χ f̄γµ

�
Gf

PV +Gf
PAγ

5
�
f , (3.7)

Tensor : O
f
T ≡ mf√

2
χ̄σµνχ f̄σµν

�
Gf

T +Gf
TAγ

5
�
f , (3.8)

where σµν ≡ i[γµ, γν
]/2. Notice that effective operators with Gf

SA in Eq. (3.4), Gf
P in Eq. (3.5)

and Gf
TA in Eq. (3.8) are CP-violating.

4
In absence of CP violation in the DM sector, these

operators are zero. We, nevertheless, include them in our analysis because of lack of knowledge

in the DM sector. The mass insertion in Eqs. (3.4, 3.5, 3.8) manifests the involvement of the

Higgs doublet to break the chiral symmetry without violating the gauge symmetry, like SM

Yukawa couplings.

Analyzing the operators one by one, we conduct our study following the lead of four

criteria.

1. Computing the gamma-ray flux as explained in Section 2, the analyzed operator must

reproduce the Fermi bubbles signal. A chi-square statistic is used to investigate this

point.

2. Solving the Boltzmann equation, we request to reproduce the correct amount of DM

relic density. Note that if the value of the DM coupling leading to the correct relic

4In Eq. (3.8) we have the following CP transformation property

O
5
µν ≡ f̄

i

2
(γµγν − γνγµ)γ

5f
CP
=⇒ (−1)µ(−1)νO5

µν , (3.9)

where (−1)0 = 1 and (−1)i = −1 for i = 1, 2, 3.
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Figure 2: Chi-square results (68% C.L., darker region; 99% C.L., lighter region) for the
fit of the Fermi bubbles signal in the plane [Mχ, G

f
i ]. The color code follows Fig. 1. We

superimpose the contours reproducing the correct amount of relic abundance. This calculation
does not depend on the mass of the fermions in the final state, thus we plot one single orange
line for annihilation into bb̄, cc̄ and qq̄. Final state involving τ+τ− differs because of the
absence of the color factor. Left panel: Pseudoscalar operator. Right panel: Vector operator.
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Figure 3: The same as in Fig. 2. Left panel: Pseudovector operator. Right panel: Tensor
operator.
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Vector Operator (DD)

1. sea quark is ruled out

2. valence quark is from one-loop

 
3. GA is safe, due to Spin-dependent scattering
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where DM χ can be either Majorana or Dirac except for the vector and tensor case, in which

only the Dirac DM is present. From the SM side, we couple Oi
χ with gauge invariant SM

currents. Considering for definiteness the vector-like interaction χ̄Γµχ, this means that we

take

O
µ
SM,V =

Gf
V,L√
2
(f̄1,L f̄2,L)γ

µ

�
f1,L
f2,L

�
+

Gf1
V,R√
2
f̄1,Rγ

µf1,R +
Gf2

V,R√
2
f̄2,Rγ

µf2,R

=
1√
2

�

i=1,2

f̄iγ
µ
�
Gfi

V +Gfi
Aγ

5
�
fi , (3.3)

where Gfi
V ≡ (Gf

V,L + Gfi
V,R)/2, G

fi
A ≡ (−Gf

V,L + Gfi
V,R)/2. In Eq. (3.3) (f1,L f2,L)T is the SM

SU(2)L doublet, while fi,R are the correspondent singlets. All in all we find in full generality

Scalar : O
f
S ≡ mf√

2
χ̄χ f̄

�
Gf

S +Gf
SAγ

5
�
f , (3.4)

Pseudoscalar : O
f
PS ≡ mf√

2
χ̄γ5χ f̄

�
Gf

P +Gf
PAγ

5
�
f , (3.5)

Vector : O
f
V ≡ 1√

2
χ̄γµχ f̄γµ

�
Gf

V +Gf
Aγ

5
�
f , (3.6)

Pseudovector : O
f
PV ≡ 1√

2
χ̄γµγ5χ f̄γµ

�
Gf

PV +Gf
PAγ

5
�
f , (3.7)

Tensor : O
f
T ≡ mf√

2
χ̄σµνχ f̄σµν

�
Gf

T +Gf
TAγ

5
�
f , (3.8)

where σµν ≡ i[γµ, γν
]/2. Notice that effective operators with Gf

SA in Eq. (3.4), Gf
P in Eq. (3.5)

and Gf
TA in Eq. (3.8) are CP-violating.

4
In absence of CP violation in the DM sector, these

operators are zero. We, nevertheless, include them in our analysis because of lack of knowledge

in the DM sector. The mass insertion in Eqs. (3.4, 3.5, 3.8) manifests the involvement of the

Higgs doublet to break the chiral symmetry without violating the gauge symmetry, like SM

Yukawa couplings.

Analyzing the operators one by one, we conduct our study following the lead of four

criteria.

1. Computing the gamma-ray flux as explained in Section 2, the analyzed operator must

reproduce the Fermi bubbles signal. A chi-square statistic is used to investigate this

point.

2. Solving the Boltzmann equation, we request to reproduce the correct amount of DM

relic density. Note that if the value of the DM coupling leading to the correct relic

4In Eq. (3.8) we have the following CP transformation property

O
5
µν ≡ f̄

i

2
(γµγν − γνγµ)γ

5f
CP
=⇒ (−1)µ(−1)νO5

µν , (3.9)

where (−1)0 = 1 and (−1)i = −1 for i = 1, 2, 3.
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Figure 4: Region of the parameter space [Mχ, G
f
V] excluded at 90% C.L. by the XENON100

experiment [6] (red region). We show bb final state (left panel), cc final state (central panel)

and τ+τ− final state (right panel) in correspondence of the vector operator in Eq. (3.6).

Elastic cross sections are evaluated at one-loop (see text for details and Appendix A.2 for the

analytical expressions). For each case we also show the confidence regions obtained from the

fit of the Fermi bubbles signal, and the contour reproducing the correct amount of relic density

observed today (see the right panel of Fig. 2 and the corresponding caption).

3.2 Complex scalar Dark Matter

In this section, we study the scalar DM, which has the structure

O
i
φ =

�
φ̄φ, ∂µφ̄∂

µφ, φ̄
↔
∂µφ, ∂µφ̄∂νφ

�
(3.14)

Similar to the fermionic DM, the effective operator in full generality is written as

Scalar : O
s
S ≡ mf√

2
φ̄φ f̄

�
F s
S + F s

SAγ
5
�
f , (3.15)

Vectorscalar : O
s
VS ≡ mf√

2
∂µφ̄∂

µφ f̄
�
F s
VS + F s

VSAγ
5
�
f , (3.16)

Vector : O
s
V ≡ 1√

2
φ̄
↔
∂µφ f̄γµ

�
F s
V + F s

Aγ
5
�
f , (3.17)

Tensor : O
s
T ≡ mf√

2
∂µφ̄∂νφ f̄σµν

�
F s
T + F s

TAγ
5
�
f , (3.18)

in which all the terms with γ5
is CP-violating. How to define

↔
∂ =

→
∂ −

←
∂?

13

describing DM scattering on a nucleus at rest with charge Z and mass mN . We refer to the
diagram shown in Fig. 7. The differential cross-section is given by

dσ

dEnr
=

¯|M|2
32πmNM2

χv
2
, (A.11)

where Mχ is the DM mass, and v is the DM velocity. The nuclear recoil energy is Enr =
Eχ − E �

χ.

Figure 7: One-loop diagram describing the DM-Nucleus elastic scattering through the exchange

of a photon.

A.2.1 Vector interaction

We start considering the vector operator in Eq. (3.3). The amplitude M is given by the
following expression

iM = −e2Qf√
2

[ū(k�)γµu(k)]× Iµσ × �N(p�)|
�

i

Qiq̄iγ
σqi|N(p)� , (A.12)

where Qf is the electric charge, in unit of e, of the fermion running in the loop while the sum
is over the light quarks qi with electric charge Qi. The loop integral is

Iµσ = NC

�
d4l

(2π)4

Tr
�
γµ(G

f
V +Gf

Aγ
5)(/l +mf )γσ(/k − /k

�
+ /l +mf )

�

(k − k�)2(l2 −m2
f )[(k − k� + l)2 −m2

f ]
. (A.13)

Using dimensional regularization and the MS scheme we find

Iµσ = − iGf
VgµσNC

36π2mNEd

�
3(m2

f − EnrmN)B0(−2mNEnr,m
2
f ,m

2
f )− 3A0(m

2
f ) + EnrmN + 3m2

f

�
,

(A.14)
where in D = 4− 2� dimensions

A0(m
2) =

(2πµ)2�

iπ2

�
dDk

1

(k2 −m2)
, (A.15)

B0(p
2,m2

1,m
2
2) =

(2πµ)2�

iπ2

�
dDk

1

[(p+ k)2 −m2
1] (k

2 −m2
2)

. (A.16)
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1. s-wave
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3. b b EFT,   S / Λ2 ~ 34.6 %
    τ τ  EFT,   S / Λ2 ~ 2.5 %

29

20 40 60 80 100

10�6

10�5

M Χ �GeV�

G
PSf
�GeV�

3 �

Pseudoscalar operator �GPA
f � 0�

20 40 60 80 100

10�6

10�5

M Χ �GeV�

G
Vf
�GeV�

2 �

Vector operator �GA
f � 0�

Figure 2: Chi-square results (68% C.L., darker region; 99% C.L., lighter region) for the
fit of the Fermi bubbles signal in the plane [Mχ, G

f
i ]. The color code follows Fig. 1. We

superimpose the contours reproducing the correct amount of relic abundance. This calculation
does not depend on the mass of the fermions in the final state, thus we plot one single orange
line for annihilation into bb̄, cc̄ and qq̄. Final state involving τ+τ− differs because of the
absence of the color factor. Left panel: Pseudoscalar operator. Right panel: Vector operator.
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Figure 3: The same as in Fig. 2. Left panel: Pseudovector operator. Right panel: Tensor
operator.
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where DM χ can be either Majorana or Dirac except for the vector and tensor case, in which

only the Dirac DM is present. From the SM side, we couple Oi
χ with gauge invariant SM

currents. Considering for definiteness the vector-like interaction χ̄Γµχ, this means that we

take

O
µ
SM,V =

Gf
V,L√
2
(f̄1,L f̄2,L)γ

µ

�
f1,L
f2,L

�
+

Gf1
V,R√
2
f̄1,Rγ

µf1,R +
Gf2

V,R√
2
f̄2,Rγ

µf2,R

=
1√
2

�

i=1,2

f̄iγ
µ
�
Gfi

V +Gfi
Aγ

5
�
fi , (3.3)

where Gfi
V ≡ (Gf

V,L + Gfi
V,R)/2, G

fi
A ≡ (−Gf

V,L + Gfi
V,R)/2. In Eq. (3.3) (f1,L f2,L)T is the SM

SU(2)L doublet, while fi,R are the correspondent singlets. All in all we find in full generality

Scalar : O
f
S ≡ mf√

2
χ̄χ f̄

�
Gf

S +Gf
SAγ

5
�
f , (3.4)

Pseudoscalar : O
f
PS ≡ mf√

2
χ̄γ5χ f̄

�
Gf

P +Gf
PAγ

5
�
f , (3.5)

Vector : O
f
V ≡ 1√

2
χ̄γµχ f̄γµ

�
Gf

V +Gf
Aγ

5
�
f , (3.6)

Pseudovector : O
f
PV ≡ 1√

2
χ̄γµγ5χ f̄γµ

�
Gf

PV +Gf
PAγ

5
�
f , (3.7)

Tensor : O
f
T ≡ mf√

2
χ̄σµνχ f̄σµν

�
Gf

T +Gf
TAγ

5
�
f , (3.8)

where σµν ≡ i[γµ, γν
]/2. Notice that effective operators with Gf

SA in Eq. (3.4), Gf
P in Eq. (3.5)

and Gf
TA in Eq. (3.8) are CP-violating.

4
In absence of CP violation in the DM sector, these

operators are zero. We, nevertheless, include them in our analysis because of lack of knowledge

in the DM sector. The mass insertion in Eqs. (3.4, 3.5, 3.8) manifests the involvement of the

Higgs doublet to break the chiral symmetry without violating the gauge symmetry, like SM

Yukawa couplings.

Analyzing the operators one by one, we conduct our study following the lead of four

criteria.

1. Computing the gamma-ray flux as explained in Section 2, the analyzed operator must

reproduce the Fermi bubbles signal. A chi-square statistic is used to investigate this

point.

2. Solving the Boltzmann equation, we request to reproduce the correct amount of DM

relic density. Note that if the value of the DM coupling leading to the correct relic

4In Eq. (3.8) we have the following CP transformation property

O
5
µν ≡ f̄

i

2
(γµγν − γνγµ)γ

5f
CP
=⇒ (−1)µ(−1)νO5

µν , (3.9)

where (−1)0 = 1 and (−1)i = −1 for i = 1, 2, 3.

5



Tensor Operator

1. mass suppression, s-wave, bb 

2.DM-nucleus scattering is velocity 
suppression

3. b b EFT,   S / Λ2 ~ 49.1 %
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where DM χ can be either Majorana or Dirac except for the vector and tensor case, in which

only the Dirac DM is present. From the SM side, we couple Oi
χ with gauge invariant SM

currents. Considering for definiteness the vector-like interaction χ̄Γµχ, this means that we

take

O
µ
SM,V =

Gf
V,L√
2
(f̄1,L f̄2,L)γ

µ

�
f1,L
f2,L

�
+

Gf1
V,R√
2
f̄1,Rγ

µf1,R +
Gf2

V,R√
2
f̄2,Rγ

µf2,R

=
1√
2

�

i=1,2

f̄iγ
µ
�
Gfi

V +Gfi
Aγ

5
�
fi , (3.3)

where Gfi
V ≡ (Gf

V,L + Gfi
V,R)/2, G

fi
A ≡ (−Gf

V,L + Gfi
V,R)/2. In Eq. (3.3) (f1,L f2,L)T is the SM

SU(2)L doublet, while fi,R are the correspondent singlets. All in all we find in full generality

Scalar : O
f
S ≡ mf√

2
χ̄χ f̄

�
Gf

S +Gf
SAγ

5
�
f , (3.4)

Pseudoscalar : O
f
PS ≡ mf√

2
χ̄γ5χ f̄

�
Gf

P +Gf
PAγ

5
�
f , (3.5)

Vector : O
f
V ≡ 1√

2
χ̄γµχ f̄γµ

�
Gf

V +Gf
Aγ

5
�
f , (3.6)

Pseudovector : O
f
PV ≡ 1√

2
χ̄γµγ5χ f̄γµ

�
Gf

PV +Gf
PAγ

5
�
f , (3.7)

Tensor : O
f
T ≡ mf√

2
χ̄σµνχ f̄σµν

�
Gf

T +Gf
TAγ

5
�
f , (3.8)

where σµν ≡ i[γµ, γν
]/2. Notice that effective operators with Gf

SA in Eq. (3.4), Gf
P in Eq. (3.5)

and Gf
TA in Eq. (3.8) are CP-violating.

4
In absence of CP violation in the DM sector, these

operators are zero. We, nevertheless, include them in our analysis because of lack of knowledge

in the DM sector. The mass insertion in Eqs. (3.4, 3.5, 3.8) manifests the involvement of the

Higgs doublet to break the chiral symmetry without violating the gauge symmetry, like SM

Yukawa couplings.

Analyzing the operators one by one, we conduct our study following the lead of four

criteria.

1. Computing the gamma-ray flux as explained in Section 2, the analyzed operator must

reproduce the Fermi bubbles signal. A chi-square statistic is used to investigate this

point.

2. Solving the Boltzmann equation, we request to reproduce the correct amount of DM

relic density. Note that if the value of the DM coupling leading to the correct relic

4In Eq. (3.8) we have the following CP transformation property

O
5
µν ≡ f̄

i

2
(γµγν − γνγµ)γ

5f
CP
=⇒ (−1)µ(−1)νO5

µν , (3.9)

where (−1)0 = 1 and (−1)i = −1 for i = 1, 2, 3.
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Figure 2: Chi-square results (68% C.L., darker region; 99% C.L., lighter region) for the
fit of the Fermi bubbles signal in the plane [Mχ, G

f
i ]. The color code follows Fig. 1. We

superimpose the contours reproducing the correct amount of relic abundance. This calculation
does not depend on the mass of the fermions in the final state, thus we plot one single orange
line for annihilation into bb̄, cc̄ and qq̄. Final state involving τ+τ− differs because of the
absence of the color factor. Left panel: Pseudoscalar operator. Right panel: Vector operator.
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Conclusion
1. Fermi Bubbles residual spectrum, 10o<|b| < 20o, bump feature

2.Fermi Bubbles spectrum can be fitted by Dark Matter + ICS
   bb final state:
   

3. Study EFT theory to explain Fermi bubbles, 
     Scalar DM does not work
     Fermion DM Vector bb, PseudoVector τ τ    
   
4. Concrete Model: Singlet Dark Matter is viable
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Abstract

The quest for Dark Matter signals in the gamma-ray sky is one of the most intriguing

and exciting challenges in astrophysics. In this paper we perform the analysis of the energy

spectrum of the Fermi bubbles at different latitudes, making use of the gamma-ray data

collected by the Fermi Large Area Telescope. By exploring various setups for the full-sky

analysis we achieve stable results in all the analyzed latitudes. At high latitude, |b| = 20◦−50◦,

the Fermi bubbles energy spectrum can be reproduced by gamma-ray photons generated by

inverse Compton scattering processes, assuming the existence of a population of high-energy

electrons. At low latitude, |b| = 10◦ − 20◦, the presence of a bump at Eγ ∼ 1 − 4 GeV,

reveals the existence of an extra component compatible with Dark Matter annihilation. Our

best-fit candidate corresponds to annihilation into bb with mass MDM = 61.8+6.9
−4.9 GeV and

cross section �σv� = 3.30+0.69
−0.49 × 10−26 cm3s−1. In addition, using the energy spectrum of the

Fermi bubbles, we derive new conservative but stringent upper limits on the Dark Matter

annihilation cross section.
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