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Outline

● Focal planes are growing!
● Astronomy at (sub)mm-wavelengths
● Introduction to Kinetic Inductance Detectors
● KID instruments at all wavelengths
● Superspec: an on-chip spectrometer
● Future directions



 

Ground based CMB detectors have been background limited for more 
than a decade.  The only way to increase sensitivity is with more pixels.



 

Focal planes keep growing
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Transition Edge Sensor Bolometer



 

Frequency domain multiplexed TES readout



 

SQUID readout works great. But, it's bulky, expensive, a 
dominant heat load, and sensitive to RF & magnetic fields.



 

Do we need a new detector technology?

A realistic focal plane must satisfy:

For CMB cameras and TESes:

SQUIDs  $100/pixel∼
Warm readout  $100/pixel∼
Detectors  few  $100/pixel∼
Npixels  1-10k / focal plane∼
     ⇒ few million dollars / instrument

For submm (350¹m ) cameras and TESes:

Npixels  100k / focal plane∼
     ⇒ few * 107 dollars / instrument

Ndetectors ∼ 100k
     ⇒few * 107 dollars / instrument

For 100 pixel R∼500 mm-wavelength MOS and TESes: 



 

Image: ESA & Planck collaboration



 

Cameras at mm and submm wavelengths will soon find thousands of 
sources per degree, with hundreds at z>4.

Even today, spectroscopic followup remains a major bottleneck.



 

At mm-wavelength, dusty star forming galaxies are 
modified black bodies with a few bright spectral lines

Images: J. Veiera; Blein 2002, A. Cooray (TIME-Pilot proposal) Reichers et al. (in press)



 

C+ tomographic mapping of unresolved sources
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C+ and 21 cm Cross-Correlation

• Star formation rate vs. z
• Ionization state vs. z
• Bubble size

Figures from Gong et al. 2012, ApJ 745, 49G; Slide from J. Bock

Using 21 cm & C+ Together



  

Z-Spec: a pioneering mm-wavelength 
spectrometer

120 channels from 190-305 GHz

Image: Earle 2006

First light in 2005, and still in the field
producing science results.



 

Superconductors aren't perfect conductors.

Figure: Onnes 1912 (via Goodstein & Goodstein 2000)

Above the gap energy (Δ), 
photons break pairs

Cooper-pairs don't scatter, 
But they do posses momentum!

At microwave frequencies, this leads to a complex impedance.

For T>0, there are significant
numbers of residual quasiparticles



 

At microwave frequencies, superconductors present a complex 
impedance.

Momentum and residual quasiparticles give rise
to a complex conductivity:

Solving the Mattis-Bardeen equations
for 0 < T << Tc:

First order:

Second order:



 

QP density dependence can be used as a power detector.

All images: Day, 003



 

Microwave shunt readout leads to natural multiplexing:

Figure from a Zmuidzinas group proposal



 

MKID sensitivity in dissipation readout
Use the Mattis-Bardeen equations to solve for ±¾ vs. ± nqp   
 
Looking only at the dissipation (¾i ), the result is:

But Tc = 400 mK, while Ta ∼ 5K , thus to be competitive:

- Operate at short wavelengths (eg. 350 ¹ m )
- Replace HEMTs / SiGes with para-amps
- Or, use Frequency Readout



 

MKID sensitivity in frequency readout
Same strategy, similar results, with two important differences:

 ¯(!)= ±¾2 / ±¾1 

Figure from Zmuidzinas 2012

Can adjust ¢(Tc),Qi  



 

Two Level System Noise

Attributed to tunneling states in amorphous dielectrics with broad microwave energy spectra. 

Images: Gao 2008 (thesis)

Only present in frequency readout.

Semi-emperical model of Gao et al. agrees with observations: 



 

Titanium Nitride: high Q, high Rn, tunable Tc

Image: titaniumexposed.com



 

Multiplexing requirements set
minimum value of Qi.

Figure based on Zmuidzinas internal memo



 

Redacted slides

Several slides from other projects have been removed, since I haven't received permission to post them online.

 For more information on this projects, please see:

● A-MKID: http://www3.mpifr-bonn.mpg.de/div/submmtech/bolometer/A-MKID/A-MKID_technology.html

● NIKA: http://www.iram.es/IRAMES/mainWiki/NIKA/Main

● MAKO: https://indico.hep.anl.gov/indico/materialDisplay.py?contribId=3&materialId=slides&confId=368

● Deshima: http://www.cosmonanoscience.tudelft.nl/?page_id=143

● ANL X-Ray detectors: http://adsabs.harvard.edu/abs/2014JLTP..176..497M

● UCSB (& FNAL) optical detectors: http://web.physics.ucsb.edu/~bmazin/Mazin_Lab/Welcome.html
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Incoming radiation is sorted by narrow 
band filters

Each channel couples to a power 
detector

Channel width and spacing are 
independently adjustable

A general filter bank 
(or cochlear) spectrometer:
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SuperSpec first generation design

Tc = 1 – 2 K



Sonnet Simulations

Simulated 
response of a 
7-element 
filter-bank



probe-fed waveguide on 
25 μm SOI device layer

Terminate with long section 
of meandered feedline 

surrounded by TiN
73 spectral channels
 - f0 = 200 – 300 GHz
 - Q = 300 – 1400

8 broad-band 
absorbers

~95% optically active

Gen1 Chip
1.08 cm



>90% coupling efficiency
from 195 to 310 GHz

Design and images by T. Reck

Gen1 Probe-Fed Waveguide and Horn

>99% coupling efficiency
from 200 to 295 GHz

Multiple flare-angle feedhorn
(Leech et al. 2011)



 

CASPER-ROACH based FPGA readout system

Developed by R. Monroe, L. Swenson, R. Williamson

Virtex 5 FPGA, ROACH board operated
at baseband frequencies
 (0-250, or 250-500 MHZ)

On-sky data with ~500 pixels with 
MAKO at the CSO



 

GPU-based rapid prototyping and chirp-readout test bed

Currently being developed by A. Kovacs, L. Swenson



FTS Measurements

• Full band spectra measured with CASPER-ROACH based FPGA readout 
system (same system deployed by MAKO/CSO)

• Residual out of band response typically 30dB below peak
• Channel center placement has 2 – 3% scatter – partially systematic with 

frequency, Q, location in filter bank
• Too large to be errors in resonator length --> wavespeed variation 
• Will soon test chips with large bank of near-identical channels to measure 

real dispersion.

residuals
BB channel

Lorentizan Fit

Normalized profiles of 71 spectral 
channels readout in parallel



Coherent Source Measurements

• Spectral response characterized using a swept coherent source
• Normalize response with near simultaneous measurements of BB ref 

channel – well described by Lorentzian
• Comparison of designed and measured Q indicates a source of loss 

characerized by Qloss ~ 1440 --> likely SiNx ILD in microstrip

• Greater than 50% of the incident power lost for R > 420
• Better dielectrics (a-Si, crystal Si)

BB ref

Normalized 
Data

Lorentzian
Fit

Qloss ~ 1440
tan δ ~ 7 x 10-4

no loss



Gen2 – Improved NEP and diagnostics

• Modifications to improve diagnostics
– Simpler planar antenna + hyper-

hemispherical lens
– BB detectors couple to a longer section of 

the feedline, comparable to a wavelength 
in length

– Small number (10) of isolated spectral 
channels

– Dark channel

• Modifications to boost sensitivity
– Shrink inductor volume by x5
– More uniform current density
– Wider IDC spacing

455um

345um



Gen2 Packaging

lens 
footprint



Sockout Measurement

Qr/Qc

0.15

0.25

0.50

BB channels – sections of 
meandered TiN in proximity 
to feedline, approx λ in length

BB2 BB3

BB1 BB4

BB1 + BB2

Spec channel
BB1 + BB2

BB3 + BB4
BB1 + BB2Modeling indicates

  - Qr/Qc ~ 0.25
  - Absorbed fraction ~ 37%

With Qloss = 1440
 - Detected fraction ~ 28%
 - Can achieve ~ 34% with R = 
250, adjusted dimensions

Q = 282



Mattis Bardeen result



Close to linear frequency shift with loading

lN2



Excess Noise with Loading

LO OFF

LO ON – Teff ~ 2000K

Common mode 1/f noise from LO

device noise

STLS ~ f -0.25



Excess Noise with Loading

GR multiplier = 1.5



System NEP and Future Improvements
• Our current R = 250 channels provided NEPTLS(1Hz) = 5.2 x 10-16 

W/Hz1/2, front of cryostat –> factor of 16 above NEPγ at CSO

• Near term improvements –> factor of 3.4 increase
– AR coating lens
– Adjusting spectrometer coupling strength
– Dropping Tc from 1.65K to 1.2K

• Moderate term improvements –> factor of >6 increase
– Reducing inductor linewidth from 1μm to 0.5μm
– Anomalous factor of 2 in system optical efficiency
– Thicker capacitor, wider IDC spacing

• Longer term improvements
– Switching to Tc = 0.8K –> factor of 2.5 increase
– Better dielectric –> factor of 1.4 increase

–> factor of 2 better than 
NEPγ for R = 50!
–> candidate for tomography



Summary

We've achieved:
● Working mm-wave filter bank
● Narrow (R~700) channels
● Low out-of-band loading (1 part in 104)
● High-Q (>105), 100 MHz KIDs
● Background limited operation at R~50
● Hundreds-of-pixel FPGA MUX readout

We're working on:
● New design for higher response
● Understanding TiN response
● Channel placement accuracy
● Lower loss dielectrics for high-R channels



Future directions

●Antenna-coupled mm-wave detectors made 
at ANL and tested at U. Chicago

●Characterizing response of thin Al and TiN, including single-
crystal MBE films

●Kinetic inductance resonator para-amps and transimpedance 
devices for KID and TES readout.


