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THE MILKY WAY

•MW: fairly typical example of             
large disk galaxy

•MW provides unique detailed view of 
the distribution of baryonic and dark 
matter in a large disk galaxy

• This talk: new measurements of the 
MW’s stellar density distribution and 
gravitational potential

Juric et al. (2008)



STELLAR AND DARK MASS IN THE INNER 
MILKY WAY
•What is the overall structure of the disk and how did it change over 

time? Did the disk grow “inside-out”?

• What is the Milky Way’s circular velocity?

• What is the relative importance of baryonic and dark matter :

• Is the Milky Way’s disk maximal? That is, does it have as much baryonic 
matter as possible without a central hole in the dark halo?

• How much dark matter is there near the Sun?

• What is the radial profile of the halo? Is the halo contracted?

• What is the total stellar mass of the Milky Way? Is this normal for a 
galaxy with the MW’s circular velocity?

• Is all of the dynamical mass accounted for by baryonic matter + 
~spherical DM?



STAR COUNTS

f(~x,~v|[Fe/H], [↵/Fe])

= f( ~J |[Fe/H], [↵/Fe])

Phenomenological:

Dynamical:

Herschel (1781)



f(~x,~v|[Fe/H], [↵/Fe])
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MAPS: MONO-ABUNDANCE POPULATIONS

•What is the spatial and kinematic structure of each MAP?

•What does this tell us about the global structure of the disk?



SEGUE G STARS
• G dwarf sample: 0.48 ≤ g-r ≤ 0.55, 

14.5 ≤ r ≤ 20.2, log g > 4.2, SN > 
15, —30,000 stars

•Narrow range of Teff →relative 
ranking of [Fe/H] and [α/Fe] good

Bovy et al. (2012b); ApJ 753, 148
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LIKELIHOOD-BASED 
DENSITY FITS

• proper model is a Poisson process

• observed density of stars λ(l,b,d,r,g-r,[Fe/H]):

• log likelihood:

•marginalize over amplitude:

Bovy et al. (2012b); ApJ 753, 148



FIT EXAMPLES IN BROAD BINS IN ABUNDANCE

Vertical height       Galactocentric radius

Bovy et al. (2012b); ApJ 753, 148



MAPS: WHAT HAVE WE 
LEARNED AND WHAT DO 
WE PREDICT?
• High [α/Fe]: (range of) large scale 

height(s) → unambiguously thick; short 
scale length → increasingly          
important in inner disk

• Low [α/Fe]: (range of) small scale 
height(s) → thin-ish; scale lengths 
varying from ~3 kpc to flat → low-     
[Fe/H] increasingly important in outer 
disk

• Each MAP isothermal (also dynamically), 
high and low-alpha continuously blend 
together
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DOES THE MILKY WAY HAVE A THICK DISK?
CHEMICAL BI-MODALITY?

• SEGUE has a relatively simple color-magnitude selection, but the 
sample is high-latitude, weighted toward the faint end, and weighted 
toward more low-mass, metal-poor stars

• Impossible to draw conclusions from the figure on the left!
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Total visible surface density 
= 30  M� pc�2



DOES THE MILKY WAY HAVE A THICK DISK?
SCALE-HEIGHT BI-MODALITY?

Bovy et al. (2012a); ApJ 751, 131

Extrapolated to whole disk

~50%                 ~50%

(see also Snaith et al. 2014)



• Total vertical profile looks like 
two exponentials with a ratio of 
scale heights 3:1
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STELLAR MASS DISTRIBUTION
• first real constraint on thick-disk component’s scale length 

shows that it is short ≈ 2 kpc

• assuming that [α/Fe] is a proxy for age, our results show that 
old components are more centrally concentrated than young 
components → inside-out disk formation

• scale heights and vertical dispersion increases smoothly from 
thin to thick → no clear thick/thin disk break; mass-weighted 
vertical height and kinematics distribution shows no bimodality 
→ no thick disk

• Smooth structure and large amount of mass in large scale-
height components difficult to reconcile with impact of (few) 
mergers → internal processes dominate evolution



= f(~v|[Fe/H], [↵/Fe], ~x)⇥ f(~x|[Fe/H], [↵/Fe])

f(~x,~v|[Fe/H], [↵/Fe])

DYNAMICS
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f(~x,~v|[Fe/H], [↵/Fe])

= f( ~J |[Fe/H], [↵/Fe])

DYNAMICS



• Jeans Eqns.: Moments of collisionless Boltzmann equation that describes 
the steady state

VERTICAL KINEMATICS: JEANS+POISSON 
EQUATIONS



• Jeans Eqns.: Moments of collisionless Boltzmann equation that describes 
the steady state

VERTICAL KINEMATICS: JEANS+POISSON 
EQUATIONS

1D Tilt =~ 0

slope of rotation curve =~ 0



• All mono-abundance 
populations feel the same 
potential

MONO-ABUNDANCE DYNAMICS: VERTICAL

Spatial density   +     kinematics       =       vertical force

Zhang, Rix, van de Ven, Bovy, et al. (2012), ApJ, 772, 108
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• All mono-abundance 
populations feel the same 
potential

MONO-ABUNDANCE DYNAMICS: VERTICAL

Spatial density   +     kinematics       =       vertical force

Zhang, Rix, van de Ven, Bovy, et al. (2012), ApJ, 772, 108



RADIAL DISK AND HALO PROFILES

• Existing and future data (e.g., Gaia) allow us to perform the previous 
analysis at R =/= R0   => Σ(R) and ρ(R) 

• This allows us to measure the disk profile (scale length) and infer the halo 
profile



ACTION MODELING OF THE DISK
• Going beyond the Jeans equation is necessary at large heights and for 

larger distances from the Sun

• Can use Jeans theorem: distribution function can only be a function of 
integrals of the motion

• Full modeling of the disk has been held back by difficulty in calculating 
the third integral (σR ≠ σz)

• Typical approximation: I3 = Ez ~ Oort limit and analysis

• Binney (2010) introduced action-based quasi-isothermal DF and 
modeled the solar neighborhood as a superposition of such DFs in a 
fixed potential

• Binney (2012): Uses Staeckel fudge to get actions and modeled the solar 
neighborhood again



•Model the distribution function of stars in x,v as being in a 
steady state:

DISTRIBUTION FUNCTION MODELING

p(x,v|model) =

DF (x,v)R
dxdvDF (x,v)

p(x,v|model) =

DF (J(x,v))R
dxdvDF (J(x,v))

•With selection function:

p(x,v|model) =

DF (J(x,v))R
dxdvDF (J(x,v))S(x)

•With errors/missing data:
p(x

obs

,v
obs

|model) =

Z
dx

0
dv

0 p(x
obs

,v
obs

|x0,v0
)p(x0,v0|model)



• In four component model for 
Milky Way potential (2 
exponential disks, bulge, halo)

• Properties of DF:

DISK DISTRIBUTION FUNCTION MODELING
Binney (2010), Binney & McMillan (2011)
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DISK DISTRIBUTION FUNCTION MODELING
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Fig. 4.— Same as Figure 3, but now the qDF projected into position and velocity space.

The top left panel shows the vertical density profile; the inset shows that this qDF disk
population flares slightly (these profiles are calculated using the Stäckel-based approximation

of the actions). The top right panel shows the radial density profile at 1 kpc from the plane;
an exponential with a scale length of 2 kpc is shown for comparison. The bottom panels

shows the tilt of the velocity ellipsoid and the vertical velocity dispersion at R0 as a function
of height. All four profiles are computed both using the adiabatic approximation for the
calculation of the actions and for the Stäckel-based approximation. The position and velocity

dependence of the qDF is very similar when using these two approximations, except for the
tilt of the velocity ellipsoid. This tilt is zero in the adiabatic approximation and close to

pointing to the Galactic center (gray line in the bottom left panel) when using the Stäckel
approximation. The S08 measurement of the tilt is from Siebert et al. (2008). The dynamical
analysis in this paper is performed using the Stäckel approximation and therefore includes

a realistic tilt.
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of the actions). The top right panel shows the radial density profile at 1 kpc from the plane;
an exponential with a scale length of 2 kpc is shown for comparison. The bottom panels

shows the tilt of the velocity ellipsoid and the vertical velocity dispersion at R0 as a function
of height. All four profiles are computed both using the adiabatic approximation for the
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approximation. The S08 measurement of the tilt is from Siebert et al. (2008). The dynamical
analysis in this paper is performed using the Stäckel approximation and therefore includes
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of the actions). The top right panel shows the radial density profile at 1 kpc from the plane;
an exponential with a scale length of 2 kpc is shown for comparison. The bottom panels

shows the tilt of the velocity ellipsoid and the vertical velocity dispersion at R0 as a function
of height. All four profiles are computed both using the adiabatic approximation for the
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calculation of the actions and for the Stäckel-based approximation. The position and velocity

dependence of the qDF is very similar when using these two approximations, except for the
tilt of the velocity ellipsoid. This tilt is zero in the adiabatic approximation and close to

pointing to the Galactic center (gray line in the bottom left panel) when using the Stäckel
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• SEGUE: 6D data set extending to multiple 
kpc from the Sun at high latitude

• Separate stars by chemical abundance and 
model each population as a quasi-
isothermal DF

• Marginalizing over DF parameters and 
simple potential model, use each population 
to constrain Fz(z=1.1 kpc) at a certain 
radius

APPLICATION TO SEGUE
Bovy & Rix (2013), ApJ, 779, 115
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SPATIAL FITS USING DYNAMICAL MODEL

Data distribution in distance from plane

small ΔR

Bovy & Rix (2013), ApJ, 779, 115



SPATIAL FITS USING DYNAMICAL MODEL

Data distribution in vertical velocity
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Fig. 25.— Same as Figure 24, but for the distribution of vertical velocities as a function of

height.

small ΔZ
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Fig. 25.— Same as Figure 24, but for the distribution of vertical velocities as a function of

height.

Bovy & Rix (2013), ApJ, 779, 115



SURFACE-DENSITY PROFILE

Bovy & Rix (2013), ApJ, 779, 115
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SURFACE-DENSITY PROFILE
⌃(R, |Z|  1.1 kpc) = 69M� pc

�2
exp


�R�R0

2.5 kpc

�

Bovy & Rix (2013), ApJ, 779, 115
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TABLE 3
Measured surface density and vertical force at different Galactocentric radii

[Fe/H] [α/Fe] R Σ1.1(R) δΣ1.1(R) R0 −R KZ,1.1(R) δKZ,1.1(R)
(dex) (dex) (kpc) (M⊙ pc−2) (M⊙ pc−2) (kpc) (2πGM⊙ pc−2) (2πGM⊙ pc−2)

-1.25 0.425 4.63 256.0 50.4 3.37 217.6 41.5
-1.15 0.425 4.68 270.9 44.3 3.32 230.6 36.8
-1.05 0.375 6.71 89.7 20.3 1.29 84.2 18.5
-1.05 0.425 4.77 244.2 40.1 3.23 209.0 33.2
-0.95 0.325 4.59 228.4 48.3 3.41 194.7 38.6
-0.95 0.375 5.04 207.6 34.9 2.96 180.5 29.2
-0.95 0.425 5.22 204.3 30.1 2.78 179.0 25.6
-0.95 0.475 4.68 247.9 41.3 3.32 211.4 33.7
-0.85 0.275 7.38 65.0 11.9 0.62 62.2 11.2
-0.85 0.325 6.53 104.9 19.8 1.47 97.5 18.0
-0.85 0.375 6.62 118.1 14.0 1.38 109.8 12.9
-0.85 0.425 6.66 127.6 14.0 1.34 119.0 12.9
-0.85 0.475 5.08 202.8 35.9 2.92 176.8 30.1
-0.75 0.275 7.42 64.4 11.6 0.58 61.7 11.0
-0.75 0.325 6.53 125.0 16.2 1.47 115.9 14.8
-0.75 0.375 7.11 97.3 8.0 0.89 92.0 7.5
-0.75 0.425 6.71 130.6 11.8 1.29 121.9 10.9
-0.75 0.475 6.53 103.3 19.8 1.47 96.1 18.0
-0.65 0.275 7.20 81.4 12.6 0.80 77.3 11.8
-0.65 0.325 7.20 100.2 9.9 0.80 95.2 9.3
-0.65 0.375 6.34 159.2 12.7 1.66 146.3 11.5
-0.65 0.425 6.79 108.0 14.5 1.21 101.2 13.4
-0.55 0.275 7.29 89.2 9.6 0.71 84.9 9.1
-0.55 0.325 7.29 93.1 7.8 0.71 88.5 7.4
-0.55 0.375 7.02 104.7 8.7 0.98 98.7 8.2
-0.55 0.425 6.57 108.3 18.7 1.43 100.8 17.1
-0.45 0.225 7.56 77.6 8.5 0.44 74.5 8.1
-0.45 0.275 6.75 122.4 12.6 1.25 114.3 11.7
-0.45 0.325 6.84 115.7 10.1 1.16 108.4 9.4
-0.45 0.375 5.54 189.6 24.1 2.46 168.6 20.9
-0.35 0.225 7.29 91.5 10.2 0.71 87.2 9.6
-0.35 0.275 6.57 150.9 13.5 1.43 140.1 12.4
-0.35 0.325 5.67 190.6 22.3 2.33 170.6 19.5
-0.25 0.175 7.70 75.6 8.4 0.30 72.8 8.0
-0.25 0.225 7.88 64.6 8.5 0.12 62.4 8.2
-0.15 0.125 7.70 76.7 8.1 0.30 73.9 7.8
-0.15 0.175 6.08 161.8 19.8 1.92 147.4 17.7
-0.05 0.025 6.57 121.9 16.4 1.43 113.2 14.9
-0.05 0.075 7.92 71.4 7.0 0.08 69.2 6.8
0.05 0.025 8.55 54.7 4.9 -0.55 53.4 4.7
0.05 0.075 7.20 106.8 10.0 0.80 101.3 9.4
0.15 0.025 6.03 145.4 20.9 1.97 132.4 18.8
0.25 0.025 4.82 240.3 42.9 3.18 206.2 35.7

Note. — Each row gives the measurement of the surface density up to |Z| = 1.1 kpc obtained from
a single MAP, specified by its central [Fe/H] and [α/Fe]. The radius is that where the correlation
between the inferred surface density and the potential model’s disk scale length is minimal; this is the
radius at which the surface density is best measured by a MAP (see FIG. 11). The last two columns
give the alternative measurement of the vertical force KZ,1.1 at 1.1 kpc and its uncertainty. The third
to last column gives the difference between the radius at which Σ1.1 or KZ,1.1 is measured and R0

(to be held constant when using our measurements with a different value of R0).

which is very close and within the statistical uncertain-
ties of the result obtained using the An09 scale (equa-
tion [30]). Therefore, the impact of systematic dis-
tance uncertainties on the measurement of Σ1.1(R) and
KZ,1.1(R) is insignificant, at the level of ≈ 2%.
To determine the impact of the rather constrained fidu-

cial model for the gravitational potential, we repeat the
measurement of Σ1.1(R) for different choices for the most
important fixed parameters of the potential. Foremost
among these is the normalization of the potential, char-
acterized by the local circular velocity in our parame-
terization. We have fixed this to Vc(R0) = 230 km s−1

in the fiducial model. In the top panel of FIG. 16 we
compare the results when using Vc(R0) = 250 km s−1 to
those obtained for the fiducial model, again at the radius
determined using the fiducial model. We see that the

impact of changing the potential normalization is close
to zero for almost all MAPs and in all cases the shift
is much smaller than the random uncertainties. The
dashed line in this figure shows the expected difference if
Σ1.1 ∝ V 2

c , the expected scaling if the measured surface-
density were wholly dependent on the normalization of
the potential (or equivalently, of the rotation curve),
that is, if we were not really measuring Σ1.1 or KZ,1.1.
KZ,1.1(R) behaves the same when changing Vc(R0). Sim-
ilarly, in the second panel we compare the results ob-
tained using Vc(R0) = 210 km s−1 to those from the fidu-
cial model; these two sets of results are again nearly indis-
tinguishable and the difference is much smaller than the
Σ1.1 ∝ V 2

c expectation (dashed line). Note in this case
that the measured value for Vc(R0) = 230 km s−1 for the
bins that measure Σ1.1 at R ≈ 5 kpc is at the edge of the
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TABLE 3
Measured surface density and vertical force at different Galactocentric radii

[Fe/H] [α/Fe] R Σ1.1(R) δΣ1.1(R) R0 −R KZ,1.1(R) δKZ,1.1(R)
(dex) (dex) (kpc) (M⊙ pc−2) (M⊙ pc−2) (kpc) (2πGM⊙ pc−2) (2πGM⊙ pc−2)

-1.25 0.425 4.63 256.0 50.4 3.37 217.6 41.5
-1.15 0.425 4.68 270.9 44.3 3.32 230.6 36.8
-1.05 0.375 6.71 89.7 20.3 1.29 84.2 18.5
-1.05 0.425 4.77 244.2 40.1 3.23 209.0 33.2
-0.95 0.325 4.59 228.4 48.3 3.41 194.7 38.6
-0.95 0.375 5.04 207.6 34.9 2.96 180.5 29.2
-0.95 0.425 5.22 204.3 30.1 2.78 179.0 25.6
-0.95 0.475 4.68 247.9 41.3 3.32 211.4 33.7
-0.85 0.275 7.38 65.0 11.9 0.62 62.2 11.2
-0.85 0.325 6.53 104.9 19.8 1.47 97.5 18.0
-0.85 0.375 6.62 118.1 14.0 1.38 109.8 12.9
-0.85 0.425 6.66 127.6 14.0 1.34 119.0 12.9
-0.85 0.475 5.08 202.8 35.9 2.92 176.8 30.1
-0.75 0.275 7.42 64.4 11.6 0.58 61.7 11.0
-0.75 0.325 6.53 125.0 16.2 1.47 115.9 14.8
-0.75 0.375 7.11 97.3 8.0 0.89 92.0 7.5
-0.75 0.425 6.71 130.6 11.8 1.29 121.9 10.9
-0.75 0.475 6.53 103.3 19.8 1.47 96.1 18.0
-0.65 0.275 7.20 81.4 12.6 0.80 77.3 11.8
-0.65 0.325 7.20 100.2 9.9 0.80 95.2 9.3
-0.65 0.375 6.34 159.2 12.7 1.66 146.3 11.5
-0.65 0.425 6.79 108.0 14.5 1.21 101.2 13.4
-0.55 0.275 7.29 89.2 9.6 0.71 84.9 9.1
-0.55 0.325 7.29 93.1 7.8 0.71 88.5 7.4
-0.55 0.375 7.02 104.7 8.7 0.98 98.7 8.2
-0.55 0.425 6.57 108.3 18.7 1.43 100.8 17.1
-0.45 0.225 7.56 77.6 8.5 0.44 74.5 8.1
-0.45 0.275 6.75 122.4 12.6 1.25 114.3 11.7
-0.45 0.325 6.84 115.7 10.1 1.16 108.4 9.4
-0.45 0.375 5.54 189.6 24.1 2.46 168.6 20.9
-0.35 0.225 7.29 91.5 10.2 0.71 87.2 9.6
-0.35 0.275 6.57 150.9 13.5 1.43 140.1 12.4
-0.35 0.325 5.67 190.6 22.3 2.33 170.6 19.5
-0.25 0.175 7.70 75.6 8.4 0.30 72.8 8.0
-0.25 0.225 7.88 64.6 8.5 0.12 62.4 8.2
-0.15 0.125 7.70 76.7 8.1 0.30 73.9 7.8
-0.15 0.175 6.08 161.8 19.8 1.92 147.4 17.7
-0.05 0.025 6.57 121.9 16.4 1.43 113.2 14.9
-0.05 0.075 7.92 71.4 7.0 0.08 69.2 6.8
0.05 0.025 8.55 54.7 4.9 -0.55 53.4 4.7
0.05 0.075 7.20 106.8 10.0 0.80 101.3 9.4
0.15 0.025 6.03 145.4 20.9 1.97 132.4 18.8
0.25 0.025 4.82 240.3 42.9 3.18 206.2 35.7

Note. — Each row gives the measurement of the surface density up to |Z| = 1.1 kpc obtained from
a single MAP, specified by its central [Fe/H] and [α/Fe]. The radius is that where the correlation
between the inferred surface density and the potential model’s disk scale length is minimal; this is the
radius at which the surface density is best measured by a MAP (see FIG. 11). The last two columns
give the alternative measurement of the vertical force KZ,1.1 at 1.1 kpc and its uncertainty. The third
to last column gives the difference between the radius at which Σ1.1 or KZ,1.1 is measured and R0

(to be held constant when using our measurements with a different value of R0).

which is very close and within the statistical uncertain-
ties of the result obtained using the An09 scale (equa-
tion [30]). Therefore, the impact of systematic dis-
tance uncertainties on the measurement of Σ1.1(R) and
KZ,1.1(R) is insignificant, at the level of ≈ 2%.
To determine the impact of the rather constrained fidu-

cial model for the gravitational potential, we repeat the
measurement of Σ1.1(R) for different choices for the most
important fixed parameters of the potential. Foremost
among these is the normalization of the potential, char-
acterized by the local circular velocity in our parame-
terization. We have fixed this to Vc(R0) = 230 km s−1

in the fiducial model. In the top panel of FIG. 16 we
compare the results when using Vc(R0) = 250 km s−1 to
those obtained for the fiducial model, again at the radius
determined using the fiducial model. We see that the

impact of changing the potential normalization is close
to zero for almost all MAPs and in all cases the shift
is much smaller than the random uncertainties. The
dashed line in this figure shows the expected difference if
Σ1.1 ∝ V 2

c , the expected scaling if the measured surface-
density were wholly dependent on the normalization of
the potential (or equivalently, of the rotation curve),
that is, if we were not really measuring Σ1.1 or KZ,1.1.
KZ,1.1(R) behaves the same when changing Vc(R0). Sim-
ilarly, in the second panel we compare the results ob-
tained using Vc(R0) = 210 km s−1 to those from the fidu-
cial model; these two sets of results are again nearly indis-
tinguishable and the difference is much smaller than the
Σ1.1 ∝ V 2

c expectation (dashed line). Note in this case
that the measured value for Vc(R0) = 230 km s−1 for the
bins that measure Σ1.1 at R ≈ 5 kpc is at the edge of the
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≈ 5×1010M⊙. Our estimate of the baryonic mass in the
Galaxy of Mbaryonic = 6.3 ± 0.3 × 1010 M⊙ also agrees
with their estimate of Mbaryonic = 6.1 ± 0.5 × 1010M⊙.
However, it is important to note that ours is a purely
dynamical measurement, while Flynn’s value relies on
assumptions about the stellar mass function in the disk
and about the manner in which mass traces light.

6.3. Disk maximality and the Milky Way compared to
external galaxies

The measurements of the Milky Way’s disk mass scale
length and stellar mass from this paper allow us to make
comparisons of the Milky Way with external galaxies,
e.g., through the Tully-Fisher relation, initially put forth
by Flynn et al. (2006), more precise. A main source of
systematic uncertainty in Flynn et al. (2006) was the
uncertainty in the value of the radial scale length, which
a priori could have been anywhere between 2 kpc and
5 kpc. Our measurement of Rd = 2.15±0.14 kpc removes
this source of uncertainty. Using Flynn et al. (2006)’s
calculations of the total I-band luminosity of the Milky
Way we find that Ldisk

I ≈ 3.5 × 1010L⊙ (MI = −22.2).
Using a bulge luminosity of 1010L⊙ (Kent et al. 1991),
we find that

LI ≈ 4.5× 1010L⊙, or MI ≈ −22.5 . (49)

Combined with our measurement that Vc = 218 ±
10 km s−1, this allows us to place the Milky Way onto
the Tully-Fisher relation defined by nearby disk galaxies:
it falls well within the 1σ scatter (e.g., Dale et al. 1999)
as this relation predicts MI = −22.8 for Vc = 220 km s−1

with a scatter of 0.4mag. Therefore, from the point of
view of the Tully-Fisher relation, the Milky Way is a
typical galaxy.
The decomposition of the Milky Way’s rotation curve

into the contributions from the stellar disk and the dark-
matter halo in § 5.2 has shown that the Milky Way’s disk
is maximal by the definition of Sackett (1997). This ap-
pears to be in conflict with arguments based on the lack
of correlation between Tully-Fisher velocity residuals and
disk size for external galaxies (Courteau & Rix 1999),
which have been used to argue against disks being max-
imal. However, whether this really shows that all disks
are sub-maximal is far from clear, as dynamical modeling
of gas kinematics in various galaxies and constraints from
spiral structure have shown that some disks, especially
those with Vc > 200 km s−1, are maximal (Athanassoula
et al. 1987; Weiner et al. 2001; Kranz et al. 2003), while
being consistent with the considerations of Courteau &
Rix (1999). Measurements of the vertical velocity dis-
persions of external galaxies have been interpreted to
indicate that disks are substantially sub-maximal (e.g.,
Bottema 1997 and more recently Kregel et al. 2005 and
Bershady et al. 2011). Such measurements rely on the
same dynamical principles as those employed in this pa-
per’s measurement, but these are much more difficult to
apply in external galaxies without strong assumptions.
It is essentially impossible to measure both the scale
height and the vertical velocity dispersion for any in-
dividual external galaxy; further the velocity dispersions
obtained from integrated light do not trace the older,
dynamically-relaxed stellar populations very well. As
such, these measurements are afflicted with systematic

Fig. 23.— The Milky Way’s disk properties compared to 81 ex-
ternal galaxies from Pizagno et al. (2005). The top panel shows
the relation between stellar mass and the disk’s contribution to the
rotation velocity at 2.2 scale lengths (the extent to which the disk
is maximal, see FIG. 18); points are color-coded by the radial scale
length. The bottom panel shows the relation between the surface
density (≡ M∗ R

−2
d ) and the disk maximality. The Milky Way falls

along the general trends defined by external galaxies, except that
its scale length appears short compared to that of similar external
galaxies.

uncertainties, which have not been sufficiently investi-
gated. The fact that the Milky Way would appear sub-
stantially sub-maximal in the analysis of Bershady et al.
(2011) while the detailed dynamical modeling in this pa-
per indicates otherwise may be a sign of these systematic
uncertainties.
In FIG. 23 we compare our measurements of the Milky

Way disk’s properties to those derived from a sample of
81 disk-dominated galaxies from Pizagno et al. (2005).
We follow Gnedin et al. (2007) in using the measurements
of the disk scale lengths, stellar masses, and circular ve-
locities at 2.2 disk scale lengths to derive the disk’s con-
tribution to the rotation curve at 2.2 disk scale lengths.
In detail, we scale the stellar masses down by 20% to cor-

SUMMARY OF RESULTS
• Disk scale length: 2.15+/-0.15 kpc

• Halo contributes little to rotation curve 
and surface density at R < 10 kpc

• Mhalo(R < 10 kpc) = 4.5 +/-1.5 x 1010 
Msun
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cal mass distribution near the Sun, Σ(R0, Z). A num-
ber of such measurements exist in the literature and
we use the results from Zhang et al. (2013), which are
the best measurements of Σ(R0, Z) to date and they
are consistent with all other measurements. We only
use the measurement of KZ,1.1(R0) = 67 ± 6M⊙ pc−2

and the measurement of the stellar disk surface den-
sity Σ∗(R0) = 42 ± 5M⊙ pc−2. The measurement of
KZ,1.1(R0) is consistent with our much tighter measure-
ment in § 4.2 and therefore it does not contain much ad-
ditional information, but the measurement of the stellar
disk surface density is useful for separating the contribu-
tion from the disk and the halo to the mass budget.

5.2. Results

We use the same mass model as described in § 3.2,
except that we replace the bulge model with an expo-
nentially cut off power-law with a power-law exponent of
−1.8, cut-off radius of 1.9 kpc, and a mass of 1010M⊙,
because this is a more realistic model for the mass distri-
bution of the bulge (see Binney & Tremaine 2008; McMil-
lan 2011). We fit this to various combinations of (a)
the measurements of KZ,1.1(R) of § 4.2, (b) the termi-
nal velocity data, (c) the constraint on the local slope of
the rotation curve from equation 44, and (d) the mea-
surements of KZ,1.1(R0) and Σ∗(R0) from Zhang et al.
(2013). We now vary all five of the basic parameters
of the mass model, that is, the stellar disk mass scale
length and scale height, the circular velocity, the rela-
tive halo-to-disk contribution to V 2

c (R0), and the local
d lnVc/d lnR. None of the considered data really con-
strains the stellar scale height, but its value is uncorre-
lated with the value of the other parameters; we let it
vary between 100 pc and 500 pc. PDFs showing the pri-
mary results from these fits are shown in FIGs. 18-20. A
comparison between the best-fit model using all of the
dynamical data and the KZ,1.1(R) measurements of this
paper and the terminal velocities is shown in FIG. 17.
FIG. 18 shows the joint PDF for the stellar disk scale

length and the contribution of the stellar disk to the cir-
cular velocity at 2.2 scale lengths (≈ the peak of the
disk rotation curve). The latter parameter determines
whether the Milky Way’s disk is maximal using the def-
inition of Sackett (1997), according to which a disk is
maximal when its contribution to Vc at 2.2 scale lengths
is 85±10%. We show the constraints from different com-
binations of the dynamical constraints. The red curves
show the contours of the PDF based on the KZ,1.1(R)
measurements from this paper only, while the black
curves give the constraints based on all of the dynam-
ical data. It is clear that the measurements of KZ,1.1(R)
from this paper alone measure the scale length, largely
independent of the contribution to the mass from the
other Galactic components. FIG. 18 also shows that the
additional dynamical data from § 5.1 does not constrain
the stellar disk scale length. The joint PDF for the scale
length and disk-maximality parameter based on the rota-
tion curve and Σ(R0, Z) does show the familiar relation
that for the disk to be maximal, the disk scale length
needs to be small.

5.2.1. Constraints on the Galactic disk mass distribution

Therefore, we conclude that the KZ,1.1(R) measure-
ments from this paper are the single most important

Fig. 18.— Contours of the joint PDF for the stellar disk scale
length and the contribution of the disk to the circular velocity at 2.2
scale lengths (the parameter describing whether the disk is maxi-
mal following Sackett 1997’s definition; this definition is indicated
in the figure as “Maximal disk”). One and two sigma contours
of the PDFs based on 3 combinations of the dynamical data are
shown: (a) the KZ,1.1(R) measurements from this paper, (b) the
terminal velocity data Vterm, constraints on d lnVc(R0)/d lnR, and
the measurements from Zhang et al. (2013) (denoted as Σ∗(R0)),
and (c) the combination of (a) and (b). This Figure shows that
the KZ,1.1(R) measurements of this paper are the most informa-
tive data for the dynamical measurement of the disk scale length.
The combination of the new measurements in this paper and the
existing dynamical constraints indicate that the Milky Way’s disk
is maximal.

existing dynamical constraint on the stellar disk scale
length of the Milky Way. The result from the combined
fit to all dynamical data gives

stellar disk scale length = 2.15± 0.14 kpc . (45)

The combination of the KZ,1.1(R) measurements and the
additional dynamical data shows that the disk is maximal
since

Vc,∗

Vc

∣

∣

∣

∣

∣

2.2Rd

= 0.83± 0.04 . (46)

These measurements of the stellar disk scale length and
its contribution to the rotation curve allow us to derive
the mass of the disk. We find that the surface density
of the stellar disk at R0 is Σ∗(R0) = 38 ± 4M⊙ pc−2,
for a total surface density to 1.1 kpc of Σ1.1(R0) =
68 ± 4M⊙ pc−2, 13M⊙ pc−2 of which is assumed to be
in the thin ISM layer. As a consequence of ours being a
full 3D dynamical model, this measurement of Σ1.1(R0)
is a real measurement of Σ1.1(R0) as opposed to a mea-
surement of KZ,1.1(R0) converted to Σ1.1(R0). The fact
that it agrees so well with the local normalization of our
measured Σ1.1(R) profile in equation (30) is due to the
fact that the local slope of the circular velocity curve
is very close to flat in our best-fit model (see below).
Our measurement of the local surface density to 1.1 kpc
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rect them for the presence of any bulge component and
we lower the observed scale lengths by 10% as these scale
lengths are measured from g and r-band images, which
are typically larger than the K-band scale length, which
better traces the stellar mass (de Jong 1996). The top
panel shows that the Milky Way falls nicely within the
stellar-mass–disk-maximality relation derived from the
Pizagno et al. (2005) data. However, the Milky Way’s
scale length is quite different from that of external galax-
ies with similar stellar masses: for its stellar mass, the
Milky Way would be expected to have scale length of
≈ 4.5 kpc, albeit it with a large scatter of ≈ 2 kpc; this
is clear from the color-coding of the points in the top
panel of FIG. 23. Following Gnedin et al. (2007), we also
consider the relation between the disk’s surface density
(≡ M∗R

−2
d ) and the fraction of the circular velocity con-

tributed by the disk. This is shown in the bottom panel
of FIG. 23. The short scale length that we measure for
the Milky Way has the effect of putting the Milky Way at
the upper edge of the observed surface densities, but the
Milky Way still falls along the general trend determined
by external galaxies.
Therefore, if the Milky Way is atypical in any way, it

is because of its short scale length. However, the mass-
weighted scale length is only poorly measured for exter-
nal galaxies, because variations in the mass-to-light ratio
with radius may hamper the photometrically measured
disk profiles.

6.4. MAPs as dynamically phase-mixed populations

The analysis in this paper has used the properties
of MAPs as measured in BO12 to justify modeling the
MAPs as phase-mixed, steady-state stellar populations
that lend themselves to simple dynamical models. This
has worked well and all MAPs lead to a consistent mea-
surement of the vertical mass distribution near the disk.
The single-qDF-per-MAP model provides a good fit to
the spatial and kinematic properties of MAPs, as explic-
itly shown in the detailed comparisons between the data
and the best-fit dynamical models in Appendix B. Thus,
the MAPs are indeed well-described by the action-based
qDF, as first proposed by Ting et al. (2013), although
with the caveat that we have not modeled the radial and
azimuthal velocities.
The fact that all MAPs can be described by the qDF

adds further to the evidence that MAPs are simple dy-
namical building blocks of the (local) disk, as first pro-
posed by BO12. In particular the MAPs with scale
heights and velocity dispersions intermediate between
those of the canonical thin and thick disk are real dy-
namical populations. If these intermediate MAPs would
have arisen because of abundance errors, as was already
strongly argued against based on their observed spatial
properties and kinematics in BO12, we would not expect
to be able to model them using a consistent dynamical
model. For example, we would expect that the vertical
profile measurements would be dominated by the stars
in the thin component, while the dispersion measure-
ments would be dominated by the stars in the thicker,
kinematically-warmer component, which would strongly
overestimate the surface density (by a factor of 3 or
more). The fact that this does not happen strongly ar-
gues that the intermediate MAPs are real, phase-mixed
stellar populations in a dynamical steady state.

7. CONCLUSIONS

In this paper we have used six-dimensional dynamical
fitting employing three-action-based distribution func-
tions, in order to model abundance-selected stellar pop-
ulations from the SEGUE survey, fully accounting for
the selection function and deriving dynamical constraints
while marginalizing over properties of the DF. We have
used this in particular to obtain a measurement of Σ1.1
(or KZ,1.1) at a single Galactocentric radius for each
MAP, thus dynamically measuring for the first time the
radial profile of the surface density near the disk. These
measurements are given in TABLE 3 and they present
stringent new constraints on the mass distribution in the
inner Milky Way.
We have used these new measurements of KZ,1.1(R) in

addition to (weak) existing measurements of the terminal
velocity curve between 4 kpc and R0, the contribution of
the disk to the local surface density, and the local slope of
the rotation curve to constrain the gravitational potential
between 4 kpc and 10 kpc. We find that our new mea-
surements of KZ,1.1(R) provide the only dynamical con-
straint able to measure the dynamical (mass-weighted)
disk scale length; in combination with the other dynam-
ical constraints we can measure the properties of the
Milky Way’s disk to great precision and find

stellar disk scale length = 2.15± 0.14 kpc ,

Σ∗(R0) = 38± 4M⊙ pc−2 ,

Σdisk(R0) = 51± 4M⊙ pc−2 ,

M∗ = 4.6± 0.3× 1010M⊙ ,

Mdisk = 5.3± 0.3× 1010M⊙ ,

Mbaryonic = 6.3± 0.3× 1010M⊙ .

These direct dynamical measurements of the stellar
disk’s properties are in good agreement with measure-
ments derived from star counts, leaving little room for
dark matter in a disk-like configuration. With a scale
length this short, the Milky Way’s disk is maximal by
the definition of Sackett (1997): we find that Vc,∗/Vc =
0.83± 0.04 at 2.2 disk scale lengths.
This paper’s measurement of the disk mass will also be

particularly valuable when measuring the halo’s flatten-
ing from constraints on the potential at larger heights.
For example, Koposov et al. (2010) measured the total
potential flattening at ≈ 8 kpc from the plane from fit-
ting an orbit to the cold GD-1 stream, but found that the
uncertainty in the mass of the disk did not allow for this
to be turned into an interesting constraint on the halo’s
flattening. Using our measurement of the disk mass, the
GD-1 data indicate that the halo density flattening is
≈ 0.7+0.3

−0.15, but it is clear that a more rigorous combina-
tion of these measurements and further progress in the
dynamical fitting of tidal streams (e.g., Sanders & Bin-
ney 2013) are necessary to robustly measure the halo’s
flattening.
These measurements of the disk’s properties allow us

to separate the contribution from the disk and the halo
to the rotation curve, as shown in FIG. 21. The halo does
not contribute much to the Milky Way’s rotation curve
at R < 10 kpc. In turn this means that our constraints
on the radial profile of the halo are relatively weak. Nev-
ertheless, these are the first dynamical constraints on the

• First breaking of disk-halo degeneracy in the Milky Way:

• Disk is maximal

• Halo density relatively low, radially compatible with NFW
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≈ 5×1010M⊙. Our estimate of the baryonic mass in the
Galaxy of Mbaryonic = 6.3 ± 0.3 × 1010 M⊙ also agrees
with their estimate of Mbaryonic = 6.1 ± 0.5 × 1010M⊙.
However, it is important to note that ours is a purely
dynamical measurement, while Flynn’s value relies on
assumptions about the stellar mass function in the disk
and about the manner in which mass traces light.

6.3. Disk maximality and the Milky Way compared to
external galaxies

The measurements of the Milky Way’s disk mass scale
length and stellar mass from this paper allow us to make
comparisons of the Milky Way with external galaxies,
e.g., through the Tully-Fisher relation, initially put forth
by Flynn et al. (2006), more precise. A main source of
systematic uncertainty in Flynn et al. (2006) was the
uncertainty in the value of the radial scale length, which
a priori could have been anywhere between 2 kpc and
5 kpc. Our measurement of Rd = 2.15±0.14 kpc removes
this source of uncertainty. Using Flynn et al. (2006)’s
calculations of the total I-band luminosity of the Milky
Way we find that Ldisk

I ≈ 3.5 × 1010L⊙ (MI = −22.2).
Using a bulge luminosity of 1010L⊙ (Kent et al. 1991),
we find that

LI ≈ 4.5× 1010L⊙, or MI ≈ −22.5 . (49)

Combined with our measurement that Vc = 218 ±
10 km s−1, this allows us to place the Milky Way onto
the Tully-Fisher relation defined by nearby disk galaxies:
it falls well within the 1σ scatter (e.g., Dale et al. 1999)
as this relation predicts MI = −22.8 for Vc = 220 km s−1

with a scatter of 0.4mag. Therefore, from the point of
view of the Tully-Fisher relation, the Milky Way is a
typical galaxy.
The decomposition of the Milky Way’s rotation curve

into the contributions from the stellar disk and the dark-
matter halo in § 5.2 has shown that the Milky Way’s disk
is maximal by the definition of Sackett (1997). This ap-
pears to be in conflict with arguments based on the lack
of correlation between Tully-Fisher velocity residuals and
disk size for external galaxies (Courteau & Rix 1999),
which have been used to argue against disks being max-
imal. However, whether this really shows that all disks
are sub-maximal is far from clear, as dynamical modeling
of gas kinematics in various galaxies and constraints from
spiral structure have shown that some disks, especially
those with Vc > 200 km s−1, are maximal (Athanassoula
et al. 1987; Weiner et al. 2001; Kranz et al. 2003), while
being consistent with the considerations of Courteau &
Rix (1999). Measurements of the vertical velocity dis-
persions of external galaxies have been interpreted to
indicate that disks are substantially sub-maximal (e.g.,
Bottema 1997 and more recently Kregel et al. 2005 and
Bershady et al. 2011). Such measurements rely on the
same dynamical principles as those employed in this pa-
per’s measurement, but these are much more difficult to
apply in external galaxies without strong assumptions.
It is essentially impossible to measure both the scale
height and the vertical velocity dispersion for any in-
dividual external galaxy; further the velocity dispersions
obtained from integrated light do not trace the older,
dynamically-relaxed stellar populations very well. As
such, these measurements are afflicted with systematic

Fig. 23.— The Milky Way’s disk properties compared to 81 ex-
ternal galaxies from Pizagno et al. (2005). The top panel shows
the relation between stellar mass and the disk’s contribution to the
rotation velocity at 2.2 scale lengths (the extent to which the disk
is maximal, see FIG. 18); points are color-coded by the radial scale
length. The bottom panel shows the relation between the surface
density (≡ M∗ R

−2
d ) and the disk maximality. The Milky Way falls

along the general trends defined by external galaxies, except that
its scale length appears short compared to that of similar external
galaxies.

uncertainties, which have not been sufficiently investi-
gated. The fact that the Milky Way would appear sub-
stantially sub-maximal in the analysis of Bershady et al.
(2011) while the detailed dynamical modeling in this pa-
per indicates otherwise may be a sign of these systematic
uncertainties.
In FIG. 23 we compare our measurements of the Milky

Way disk’s properties to those derived from a sample of
81 disk-dominated galaxies from Pizagno et al. (2005).
We follow Gnedin et al. (2007) in using the measurements
of the disk scale lengths, stellar masses, and circular ve-
locities at 2.2 disk scale lengths to derive the disk’s con-
tribution to the rotation curve at 2.2 disk scale lengths.
In detail, we scale the stellar masses down by 20% to cor-
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cal mass distribution near the Sun, Σ(R0, Z). A num-
ber of such measurements exist in the literature and
we use the results from Zhang et al. (2013), which are
the best measurements of Σ(R0, Z) to date and they
are consistent with all other measurements. We only
use the measurement of KZ,1.1(R0) = 67 ± 6M⊙ pc−2

and the measurement of the stellar disk surface den-
sity Σ∗(R0) = 42 ± 5M⊙ pc−2. The measurement of
KZ,1.1(R0) is consistent with our much tighter measure-
ment in § 4.2 and therefore it does not contain much ad-
ditional information, but the measurement of the stellar
disk surface density is useful for separating the contribu-
tion from the disk and the halo to the mass budget.

5.2. Results

We use the same mass model as described in § 3.2,
except that we replace the bulge model with an expo-
nentially cut off power-law with a power-law exponent of
−1.8, cut-off radius of 1.9 kpc, and a mass of 1010M⊙,
because this is a more realistic model for the mass distri-
bution of the bulge (see Binney & Tremaine 2008; McMil-
lan 2011). We fit this to various combinations of (a)
the measurements of KZ,1.1(R) of § 4.2, (b) the termi-
nal velocity data, (c) the constraint on the local slope of
the rotation curve from equation 44, and (d) the mea-
surements of KZ,1.1(R0) and Σ∗(R0) from Zhang et al.
(2013). We now vary all five of the basic parameters
of the mass model, that is, the stellar disk mass scale
length and scale height, the circular velocity, the rela-
tive halo-to-disk contribution to V 2

c (R0), and the local
d lnVc/d lnR. None of the considered data really con-
strains the stellar scale height, but its value is uncorre-
lated with the value of the other parameters; we let it
vary between 100 pc and 500 pc. PDFs showing the pri-
mary results from these fits are shown in FIGs. 18-20. A
comparison between the best-fit model using all of the
dynamical data and the KZ,1.1(R) measurements of this
paper and the terminal velocities is shown in FIG. 17.
FIG. 18 shows the joint PDF for the stellar disk scale

length and the contribution of the stellar disk to the cir-
cular velocity at 2.2 scale lengths (≈ the peak of the
disk rotation curve). The latter parameter determines
whether the Milky Way’s disk is maximal using the def-
inition of Sackett (1997), according to which a disk is
maximal when its contribution to Vc at 2.2 scale lengths
is 85±10%. We show the constraints from different com-
binations of the dynamical constraints. The red curves
show the contours of the PDF based on the KZ,1.1(R)
measurements from this paper only, while the black
curves give the constraints based on all of the dynam-
ical data. It is clear that the measurements of KZ,1.1(R)
from this paper alone measure the scale length, largely
independent of the contribution to the mass from the
other Galactic components. FIG. 18 also shows that the
additional dynamical data from § 5.1 does not constrain
the stellar disk scale length. The joint PDF for the scale
length and disk-maximality parameter based on the rota-
tion curve and Σ(R0, Z) does show the familiar relation
that for the disk to be maximal, the disk scale length
needs to be small.

5.2.1. Constraints on the Galactic disk mass distribution

Therefore, we conclude that the KZ,1.1(R) measure-
ments from this paper are the single most important

Fig. 18.— Contours of the joint PDF for the stellar disk scale
length and the contribution of the disk to the circular velocity at 2.2
scale lengths (the parameter describing whether the disk is maxi-
mal following Sackett 1997’s definition; this definition is indicated
in the figure as “Maximal disk”). One and two sigma contours
of the PDFs based on 3 combinations of the dynamical data are
shown: (a) the KZ,1.1(R) measurements from this paper, (b) the
terminal velocity data Vterm, constraints on d lnVc(R0)/d lnR, and
the measurements from Zhang et al. (2013) (denoted as Σ∗(R0)),
and (c) the combination of (a) and (b). This Figure shows that
the KZ,1.1(R) measurements of this paper are the most informa-
tive data for the dynamical measurement of the disk scale length.
The combination of the new measurements in this paper and the
existing dynamical constraints indicate that the Milky Way’s disk
is maximal.

existing dynamical constraint on the stellar disk scale
length of the Milky Way. The result from the combined
fit to all dynamical data gives

stellar disk scale length = 2.15± 0.14 kpc . (45)

The combination of the KZ,1.1(R) measurements and the
additional dynamical data shows that the disk is maximal
since

Vc,∗

Vc

∣

∣

∣

∣

∣

2.2Rd

= 0.83± 0.04 . (46)

These measurements of the stellar disk scale length and
its contribution to the rotation curve allow us to derive
the mass of the disk. We find that the surface density
of the stellar disk at R0 is Σ∗(R0) = 38 ± 4M⊙ pc−2,
for a total surface density to 1.1 kpc of Σ1.1(R0) =
68 ± 4M⊙ pc−2, 13M⊙ pc−2 of which is assumed to be
in the thin ISM layer. As a consequence of ours being a
full 3D dynamical model, this measurement of Σ1.1(R0)
is a real measurement of Σ1.1(R0) as opposed to a mea-
surement of KZ,1.1(R0) converted to Σ1.1(R0). The fact
that it agrees so well with the local normalization of our
measured Σ1.1(R) profile in equation (30) is due to the
fact that the local slope of the circular velocity curve
is very close to flat in our best-fit model (see below).
Our measurement of the local surface density to 1.1 kpc
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26

rect them for the presence of any bulge component and
we lower the observed scale lengths by 10% as these scale
lengths are measured from g and r-band images, which
are typically larger than the K-band scale length, which
better traces the stellar mass (de Jong 1996). The top
panel shows that the Milky Way falls nicely within the
stellar-mass–disk-maximality relation derived from the
Pizagno et al. (2005) data. However, the Milky Way’s
scale length is quite different from that of external galax-
ies with similar stellar masses: for its stellar mass, the
Milky Way would be expected to have scale length of
≈ 4.5 kpc, albeit it with a large scatter of ≈ 2 kpc; this
is clear from the color-coding of the points in the top
panel of FIG. 23. Following Gnedin et al. (2007), we also
consider the relation between the disk’s surface density
(≡ M∗R

−2
d ) and the fraction of the circular velocity con-

tributed by the disk. This is shown in the bottom panel
of FIG. 23. The short scale length that we measure for
the Milky Way has the effect of putting the Milky Way at
the upper edge of the observed surface densities, but the
Milky Way still falls along the general trend determined
by external galaxies.
Therefore, if the Milky Way is atypical in any way, it

is because of its short scale length. However, the mass-
weighted scale length is only poorly measured for exter-
nal galaxies, because variations in the mass-to-light ratio
with radius may hamper the photometrically measured
disk profiles.

6.4. MAPs as dynamically phase-mixed populations

The analysis in this paper has used the properties
of MAPs as measured in BO12 to justify modeling the
MAPs as phase-mixed, steady-state stellar populations
that lend themselves to simple dynamical models. This
has worked well and all MAPs lead to a consistent mea-
surement of the vertical mass distribution near the disk.
The single-qDF-per-MAP model provides a good fit to
the spatial and kinematic properties of MAPs, as explic-
itly shown in the detailed comparisons between the data
and the best-fit dynamical models in Appendix B. Thus,
the MAPs are indeed well-described by the action-based
qDF, as first proposed by Ting et al. (2013), although
with the caveat that we have not modeled the radial and
azimuthal velocities.
The fact that all MAPs can be described by the qDF

adds further to the evidence that MAPs are simple dy-
namical building blocks of the (local) disk, as first pro-
posed by BO12. In particular the MAPs with scale
heights and velocity dispersions intermediate between
those of the canonical thin and thick disk are real dy-
namical populations. If these intermediate MAPs would
have arisen because of abundance errors, as was already
strongly argued against based on their observed spatial
properties and kinematics in BO12, we would not expect
to be able to model them using a consistent dynamical
model. For example, we would expect that the vertical
profile measurements would be dominated by the stars
in the thin component, while the dispersion measure-
ments would be dominated by the stars in the thicker,
kinematically-warmer component, which would strongly
overestimate the surface density (by a factor of 3 or
more). The fact that this does not happen strongly ar-
gues that the intermediate MAPs are real, phase-mixed
stellar populations in a dynamical steady state.

7. CONCLUSIONS

In this paper we have used six-dimensional dynamical
fitting employing three-action-based distribution func-
tions, in order to model abundance-selected stellar pop-
ulations from the SEGUE survey, fully accounting for
the selection function and deriving dynamical constraints
while marginalizing over properties of the DF. We have
used this in particular to obtain a measurement of Σ1.1
(or KZ,1.1) at a single Galactocentric radius for each
MAP, thus dynamically measuring for the first time the
radial profile of the surface density near the disk. These
measurements are given in TABLE 3 and they present
stringent new constraints on the mass distribution in the
inner Milky Way.
We have used these new measurements of KZ,1.1(R) in

addition to (weak) existing measurements of the terminal
velocity curve between 4 kpc and R0, the contribution of
the disk to the local surface density, and the local slope of
the rotation curve to constrain the gravitational potential
between 4 kpc and 10 kpc. We find that our new mea-
surements of KZ,1.1(R) provide the only dynamical con-
straint able to measure the dynamical (mass-weighted)
disk scale length; in combination with the other dynam-
ical constraints we can measure the properties of the
Milky Way’s disk to great precision and find

stellar disk scale length = 2.15± 0.14 kpc ,

Σ∗(R0) = 38± 4M⊙ pc−2 ,

Σdisk(R0) = 51± 4M⊙ pc−2 ,

M∗ = 4.6± 0.3× 1010M⊙ ,

Mdisk = 5.3± 0.3× 1010M⊙ ,

Mbaryonic = 6.3± 0.3× 1010M⊙ .

These direct dynamical measurements of the stellar
disk’s properties are in good agreement with measure-
ments derived from star counts, leaving little room for
dark matter in a disk-like configuration. With a scale
length this short, the Milky Way’s disk is maximal by
the definition of Sackett (1997): we find that Vc,∗/Vc =
0.83± 0.04 at 2.2 disk scale lengths.
This paper’s measurement of the disk mass will also be

particularly valuable when measuring the halo’s flatten-
ing from constraints on the potential at larger heights.
For example, Koposov et al. (2010) measured the total
potential flattening at ≈ 8 kpc from the plane from fit-
ting an orbit to the cold GD-1 stream, but found that the
uncertainty in the mass of the disk did not allow for this
to be turned into an interesting constraint on the halo’s
flattening. Using our measurement of the disk mass, the
GD-1 data indicate that the halo density flattening is
≈ 0.7+0.3

−0.15, but it is clear that a more rigorous combina-
tion of these measurements and further progress in the
dynamical fitting of tidal streams (e.g., Sanders & Bin-
ney 2013) are necessary to robustly measure the halo’s
flattening.
These measurements of the disk’s properties allow us

to separate the contribution from the disk and the halo
to the rotation curve, as shown in FIG. 21. The halo does
not contribute much to the Milky Way’s rotation curve
at R < 10 kpc. In turn this means that our constraints
on the radial profile of the halo are relatively weak. Nev-
ertheless, these are the first dynamical constraints on the

• First breaking of disk-halo degeneracy in the Milky Way:

• Disk is maximal

• Halo density relatively low, radially compatible with NFW
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≈ 5×1010M⊙. Our estimate of the baryonic mass in the
Galaxy of Mbaryonic = 6.3 ± 0.3 × 1010 M⊙ also agrees
with their estimate of Mbaryonic = 6.1 ± 0.5 × 1010M⊙.
However, it is important to note that ours is a purely
dynamical measurement, while Flynn’s value relies on
assumptions about the stellar mass function in the disk
and about the manner in which mass traces light.

6.3. Disk maximality and the Milky Way compared to
external galaxies

The measurements of the Milky Way’s disk mass scale
length and stellar mass from this paper allow us to make
comparisons of the Milky Way with external galaxies,
e.g., through the Tully-Fisher relation, initially put forth
by Flynn et al. (2006), more precise. A main source of
systematic uncertainty in Flynn et al. (2006) was the
uncertainty in the value of the radial scale length, which
a priori could have been anywhere between 2 kpc and
5 kpc. Our measurement of Rd = 2.15±0.14 kpc removes
this source of uncertainty. Using Flynn et al. (2006)’s
calculations of the total I-band luminosity of the Milky
Way we find that Ldisk

I ≈ 3.5 × 1010L⊙ (MI = −22.2).
Using a bulge luminosity of 1010L⊙ (Kent et al. 1991),
we find that

LI ≈ 4.5× 1010L⊙, or MI ≈ −22.5 . (49)

Combined with our measurement that Vc = 218 ±
10 km s−1, this allows us to place the Milky Way onto
the Tully-Fisher relation defined by nearby disk galaxies:
it falls well within the 1σ scatter (e.g., Dale et al. 1999)
as this relation predicts MI = −22.8 for Vc = 220 km s−1

with a scatter of 0.4mag. Therefore, from the point of
view of the Tully-Fisher relation, the Milky Way is a
typical galaxy.
The decomposition of the Milky Way’s rotation curve

into the contributions from the stellar disk and the dark-
matter halo in § 5.2 has shown that the Milky Way’s disk
is maximal by the definition of Sackett (1997). This ap-
pears to be in conflict with arguments based on the lack
of correlation between Tully-Fisher velocity residuals and
disk size for external galaxies (Courteau & Rix 1999),
which have been used to argue against disks being max-
imal. However, whether this really shows that all disks
are sub-maximal is far from clear, as dynamical modeling
of gas kinematics in various galaxies and constraints from
spiral structure have shown that some disks, especially
those with Vc > 200 km s−1, are maximal (Athanassoula
et al. 1987; Weiner et al. 2001; Kranz et al. 2003), while
being consistent with the considerations of Courteau &
Rix (1999). Measurements of the vertical velocity dis-
persions of external galaxies have been interpreted to
indicate that disks are substantially sub-maximal (e.g.,
Bottema 1997 and more recently Kregel et al. 2005 and
Bershady et al. 2011). Such measurements rely on the
same dynamical principles as those employed in this pa-
per’s measurement, but these are much more difficult to
apply in external galaxies without strong assumptions.
It is essentially impossible to measure both the scale
height and the vertical velocity dispersion for any in-
dividual external galaxy; further the velocity dispersions
obtained from integrated light do not trace the older,
dynamically-relaxed stellar populations very well. As
such, these measurements are afflicted with systematic

Fig. 23.— The Milky Way’s disk properties compared to 81 ex-
ternal galaxies from Pizagno et al. (2005). The top panel shows
the relation between stellar mass and the disk’s contribution to the
rotation velocity at 2.2 scale lengths (the extent to which the disk
is maximal, see FIG. 18); points are color-coded by the radial scale
length. The bottom panel shows the relation between the surface
density (≡ M∗ R

−2
d ) and the disk maximality. The Milky Way falls

along the general trends defined by external galaxies, except that
its scale length appears short compared to that of similar external
galaxies.

uncertainties, which have not been sufficiently investi-
gated. The fact that the Milky Way would appear sub-
stantially sub-maximal in the analysis of Bershady et al.
(2011) while the detailed dynamical modeling in this pa-
per indicates otherwise may be a sign of these systematic
uncertainties.
In FIG. 23 we compare our measurements of the Milky

Way disk’s properties to those derived from a sample of
81 disk-dominated galaxies from Pizagno et al. (2005).
We follow Gnedin et al. (2007) in using the measurements
of the disk scale lengths, stellar masses, and circular ve-
locities at 2.2 disk scale lengths to derive the disk’s con-
tribution to the rotation curve at 2.2 disk scale lengths.
In detail, we scale the stellar masses down by 20% to cor-
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cal mass distribution near the Sun, Σ(R0, Z). A num-
ber of such measurements exist in the literature and
we use the results from Zhang et al. (2013), which are
the best measurements of Σ(R0, Z) to date and they
are consistent with all other measurements. We only
use the measurement of KZ,1.1(R0) = 67 ± 6M⊙ pc−2

and the measurement of the stellar disk surface den-
sity Σ∗(R0) = 42 ± 5M⊙ pc−2. The measurement of
KZ,1.1(R0) is consistent with our much tighter measure-
ment in § 4.2 and therefore it does not contain much ad-
ditional information, but the measurement of the stellar
disk surface density is useful for separating the contribu-
tion from the disk and the halo to the mass budget.

5.2. Results

We use the same mass model as described in § 3.2,
except that we replace the bulge model with an expo-
nentially cut off power-law with a power-law exponent of
−1.8, cut-off radius of 1.9 kpc, and a mass of 1010M⊙,
because this is a more realistic model for the mass distri-
bution of the bulge (see Binney & Tremaine 2008; McMil-
lan 2011). We fit this to various combinations of (a)
the measurements of KZ,1.1(R) of § 4.2, (b) the termi-
nal velocity data, (c) the constraint on the local slope of
the rotation curve from equation 44, and (d) the mea-
surements of KZ,1.1(R0) and Σ∗(R0) from Zhang et al.
(2013). We now vary all five of the basic parameters
of the mass model, that is, the stellar disk mass scale
length and scale height, the circular velocity, the rela-
tive halo-to-disk contribution to V 2

c (R0), and the local
d lnVc/d lnR. None of the considered data really con-
strains the stellar scale height, but its value is uncorre-
lated with the value of the other parameters; we let it
vary between 100 pc and 500 pc. PDFs showing the pri-
mary results from these fits are shown in FIGs. 18-20. A
comparison between the best-fit model using all of the
dynamical data and the KZ,1.1(R) measurements of this
paper and the terminal velocities is shown in FIG. 17.
FIG. 18 shows the joint PDF for the stellar disk scale

length and the contribution of the stellar disk to the cir-
cular velocity at 2.2 scale lengths (≈ the peak of the
disk rotation curve). The latter parameter determines
whether the Milky Way’s disk is maximal using the def-
inition of Sackett (1997), according to which a disk is
maximal when its contribution to Vc at 2.2 scale lengths
is 85±10%. We show the constraints from different com-
binations of the dynamical constraints. The red curves
show the contours of the PDF based on the KZ,1.1(R)
measurements from this paper only, while the black
curves give the constraints based on all of the dynam-
ical data. It is clear that the measurements of KZ,1.1(R)
from this paper alone measure the scale length, largely
independent of the contribution to the mass from the
other Galactic components. FIG. 18 also shows that the
additional dynamical data from § 5.1 does not constrain
the stellar disk scale length. The joint PDF for the scale
length and disk-maximality parameter based on the rota-
tion curve and Σ(R0, Z) does show the familiar relation
that for the disk to be maximal, the disk scale length
needs to be small.

5.2.1. Constraints on the Galactic disk mass distribution

Therefore, we conclude that the KZ,1.1(R) measure-
ments from this paper are the single most important

Fig. 18.— Contours of the joint PDF for the stellar disk scale
length and the contribution of the disk to the circular velocity at 2.2
scale lengths (the parameter describing whether the disk is maxi-
mal following Sackett 1997’s definition; this definition is indicated
in the figure as “Maximal disk”). One and two sigma contours
of the PDFs based on 3 combinations of the dynamical data are
shown: (a) the KZ,1.1(R) measurements from this paper, (b) the
terminal velocity data Vterm, constraints on d lnVc(R0)/d lnR, and
the measurements from Zhang et al. (2013) (denoted as Σ∗(R0)),
and (c) the combination of (a) and (b). This Figure shows that
the KZ,1.1(R) measurements of this paper are the most informa-
tive data for the dynamical measurement of the disk scale length.
The combination of the new measurements in this paper and the
existing dynamical constraints indicate that the Milky Way’s disk
is maximal.

existing dynamical constraint on the stellar disk scale
length of the Milky Way. The result from the combined
fit to all dynamical data gives

stellar disk scale length = 2.15± 0.14 kpc . (45)

The combination of the KZ,1.1(R) measurements and the
additional dynamical data shows that the disk is maximal
since

Vc,∗

Vc

∣

∣

∣

∣

∣

2.2Rd

= 0.83± 0.04 . (46)

These measurements of the stellar disk scale length and
its contribution to the rotation curve allow us to derive
the mass of the disk. We find that the surface density
of the stellar disk at R0 is Σ∗(R0) = 38 ± 4M⊙ pc−2,
for a total surface density to 1.1 kpc of Σ1.1(R0) =
68 ± 4M⊙ pc−2, 13M⊙ pc−2 of which is assumed to be
in the thin ISM layer. As a consequence of ours being a
full 3D dynamical model, this measurement of Σ1.1(R0)
is a real measurement of Σ1.1(R0) as opposed to a mea-
surement of KZ,1.1(R0) converted to Σ1.1(R0). The fact
that it agrees so well with the local normalization of our
measured Σ1.1(R) profile in equation (30) is due to the
fact that the local slope of the circular velocity curve
is very close to flat in our best-fit model (see below).
Our measurement of the local surface density to 1.1 kpc
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Fig. 20.— Joint PDF for the circular velocity at R0 and the lo-
cal logarithmic slope of the circular velocity curve. The terminal
velocity curve alone constrains Vc to be around 220 km s−1 for a
flat rotation curve and a larger (smaller) Vc for a rising (falling)
rotation curve). The measurements of the vertical mass distribu-
tion (red curves) give the opposite constraint: for Vc to be larger
than 220 km s−1, the rotation curve needs to be falling near R0.
The combination of rotation-curve shape constraints and surface-
density measurements requires Vc = 218± 10 km s−1 and a gently
falling rotation curve d lnVc/d lnR = −0.06± 0.05. This is consis-
tent with the recent direct measurements of these quantities from
stellar kinematics in the plane by APOGEE (Bovy et al. 2012a),
which are shown for comparison.

and d lnVc(R0)/d lnR = −0.09 ± 0.05. We emphasize
that our measurement of Vc in this paper does not rely
on the Sun’s peculiar rotational velocity. For a further
discussion of how a measurement of Vc = 218 km s−1

compares with the literature we refer the reader to Sec-
tion 5.3 of Bovy et al. (2012a); suffice it to say that all
previous measurements are consistent with this measure-
ment. A combination of the data considered in this paper
with the APOGEE results gives Vc = 219±4 km s−1 and
d lnVc(R0)/d lnR = −0.06± 0.04. As the measurements
of this paper and the APOGEE measurements are very
different in the way that they probe the dynamics of the
disk, the fact that these two measurements agree on Vc

strongly argues that Vc ≈ 220 km s−1.
FIG. 21 shows a different representation of all of the

results described in this Section. Shown are the total ro-
tation curve and its decomposition into stellar-disk and
halo contributions. The total and stellar-disk rotation
curves are quite tightly constrained by our dynamical
data. This is mostly due to our precise measurement of
the stellar disk scale length, which was made possible by
our measurements ofKZ,1.1(R) over 4.5 kpc < R < 9 kpc.
The halo contributes significantly less to Vc(R) than the
stellar-disk at all R < 10 kpc. FIG. 21 decidedly shows
that we have for the first time clearly—and through di-
rect dynamical measurement—separated the disk and
halo contributions to the Milky Way’s rotation curve.

Fig. 21.— The Milky Way’s rotation curve at R < 10 kpc and
its decomposition into stellar-disk and halo contributions when
using all of the dynamical data (terminal velocities, KZ,1.1(R),
d lnVc(R0)/d lnR, and Σ∗(R0)). The thick lines are the median
rotation curves and the hatched regions indicate 68% confidence
regions. Both the disk and halo rotation curves are highly con-
strained by the data.

6. DISCUSSION

6.1. First dynamical measurement of the Milky Way’s
scale length

We believe that this paper presents the first dynamical
measurement of the Milky Way disk’s mass profile. Other
measurements of the scale length are either based on star
counts and it is therefore unclear whether they trace all
of the mass in the disk (e.g., Jurić et al. 2008, BO12d), or
they are based on previous dynamical data that leave the
scale length essentially unconstrained (Dehnen & Binney
1998; FIG. 18) unless strong priors are used (e.g., McMil-
lan 2011). It turns out that our best-fit model for the
mass distribution in the inner 10 kpc of the Milky Way is
similar to that of model I in Binney & Tremaine (2008),
which has a maximal disk with a scale length of 2 kpc.
If star counts do trace the underlying mass distribu-

tion, then we can compare our dynamically-inferred scale
length with that measured from star counts. There have
been many measurements over the last few decades of
the radial scale lengths of the thin and thick-disk com-
ponents spanning a wide range between 2 and 5 kpc.
These measurements have greatly improved over the last
few years with the advent of larger-area surveys with
precise multi-band photometry leading to better photo-
metric distances. For example, Jurić et al. (2008) found
from an analysis of SDSS star counts that the thin disk
scale length is 2.6 kpc, which is somewhat larger than the
scale length measured in this paper. This offset may be
due to systematic uncertainties in the photometric dis-
tances used by Jurić et al. (2008). Another, in our view
more likely explanation is that Jurić’s analysis did not
take into account that the radial scale lengths of differ-
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rect them for the presence of any bulge component and
we lower the observed scale lengths by 10% as these scale
lengths are measured from g and r-band images, which
are typically larger than the K-band scale length, which
better traces the stellar mass (de Jong 1996). The top
panel shows that the Milky Way falls nicely within the
stellar-mass–disk-maximality relation derived from the
Pizagno et al. (2005) data. However, the Milky Way’s
scale length is quite different from that of external galax-
ies with similar stellar masses: for its stellar mass, the
Milky Way would be expected to have scale length of
≈ 4.5 kpc, albeit it with a large scatter of ≈ 2 kpc; this
is clear from the color-coding of the points in the top
panel of FIG. 23. Following Gnedin et al. (2007), we also
consider the relation between the disk’s surface density
(≡ M∗R

−2
d ) and the fraction of the circular velocity con-

tributed by the disk. This is shown in the bottom panel
of FIG. 23. The short scale length that we measure for
the Milky Way has the effect of putting the Milky Way at
the upper edge of the observed surface densities, but the
Milky Way still falls along the general trend determined
by external galaxies.
Therefore, if the Milky Way is atypical in any way, it

is because of its short scale length. However, the mass-
weighted scale length is only poorly measured for exter-
nal galaxies, because variations in the mass-to-light ratio
with radius may hamper the photometrically measured
disk profiles.

6.4. MAPs as dynamically phase-mixed populations

The analysis in this paper has used the properties
of MAPs as measured in BO12 to justify modeling the
MAPs as phase-mixed, steady-state stellar populations
that lend themselves to simple dynamical models. This
has worked well and all MAPs lead to a consistent mea-
surement of the vertical mass distribution near the disk.
The single-qDF-per-MAP model provides a good fit to
the spatial and kinematic properties of MAPs, as explic-
itly shown in the detailed comparisons between the data
and the best-fit dynamical models in Appendix B. Thus,
the MAPs are indeed well-described by the action-based
qDF, as first proposed by Ting et al. (2013), although
with the caveat that we have not modeled the radial and
azimuthal velocities.
The fact that all MAPs can be described by the qDF

adds further to the evidence that MAPs are simple dy-
namical building blocks of the (local) disk, as first pro-
posed by BO12. In particular the MAPs with scale
heights and velocity dispersions intermediate between
those of the canonical thin and thick disk are real dy-
namical populations. If these intermediate MAPs would
have arisen because of abundance errors, as was already
strongly argued against based on their observed spatial
properties and kinematics in BO12, we would not expect
to be able to model them using a consistent dynamical
model. For example, we would expect that the vertical
profile measurements would be dominated by the stars
in the thin component, while the dispersion measure-
ments would be dominated by the stars in the thicker,
kinematically-warmer component, which would strongly
overestimate the surface density (by a factor of 3 or
more). The fact that this does not happen strongly ar-
gues that the intermediate MAPs are real, phase-mixed
stellar populations in a dynamical steady state.

7. CONCLUSIONS

In this paper we have used six-dimensional dynamical
fitting employing three-action-based distribution func-
tions, in order to model abundance-selected stellar pop-
ulations from the SEGUE survey, fully accounting for
the selection function and deriving dynamical constraints
while marginalizing over properties of the DF. We have
used this in particular to obtain a measurement of Σ1.1
(or KZ,1.1) at a single Galactocentric radius for each
MAP, thus dynamically measuring for the first time the
radial profile of the surface density near the disk. These
measurements are given in TABLE 3 and they present
stringent new constraints on the mass distribution in the
inner Milky Way.
We have used these new measurements of KZ,1.1(R) in

addition to (weak) existing measurements of the terminal
velocity curve between 4 kpc and R0, the contribution of
the disk to the local surface density, and the local slope of
the rotation curve to constrain the gravitational potential
between 4 kpc and 10 kpc. We find that our new mea-
surements of KZ,1.1(R) provide the only dynamical con-
straint able to measure the dynamical (mass-weighted)
disk scale length; in combination with the other dynam-
ical constraints we can measure the properties of the
Milky Way’s disk to great precision and find

stellar disk scale length = 2.15± 0.14 kpc ,

Σ∗(R0) = 38± 4M⊙ pc−2 ,

Σdisk(R0) = 51± 4M⊙ pc−2 ,

M∗ = 4.6± 0.3× 1010M⊙ ,

Mdisk = 5.3± 0.3× 1010M⊙ ,

Mbaryonic = 6.3± 0.3× 1010M⊙ .

These direct dynamical measurements of the stellar
disk’s properties are in good agreement with measure-
ments derived from star counts, leaving little room for
dark matter in a disk-like configuration. With a scale
length this short, the Milky Way’s disk is maximal by
the definition of Sackett (1997): we find that Vc,∗/Vc =
0.83± 0.04 at 2.2 disk scale lengths.
This paper’s measurement of the disk mass will also be

particularly valuable when measuring the halo’s flatten-
ing from constraints on the potential at larger heights.
For example, Koposov et al. (2010) measured the total
potential flattening at ≈ 8 kpc from the plane from fit-
ting an orbit to the cold GD-1 stream, but found that the
uncertainty in the mass of the disk did not allow for this
to be turned into an interesting constraint on the halo’s
flattening. Using our measurement of the disk mass, the
GD-1 data indicate that the halo density flattening is
≈ 0.7+0.3

−0.15, but it is clear that a more rigorous combina-
tion of these measurements and further progress in the
dynamical fitting of tidal streams (e.g., Sanders & Bin-
ney 2013) are necessary to robustly measure the halo’s
flattening.
These measurements of the disk’s properties allow us

to separate the contribution from the disk and the halo
to the rotation curve, as shown in FIG. 21. The halo does
not contribute much to the Milky Way’s rotation curve
at R < 10 kpc. In turn this means that our constraints
on the radial profile of the halo are relatively weak. Nev-
ertheless, these are the first dynamical constraints on the

• First breaking of disk-halo degeneracy in the Milky Way:

• Disk is maximal

• Halo density relatively low, radially compatible with NFW



•MAP decomposition allows one to predict the scale length as 
a function of radius

COMPARISON WITH STAR COUNTS

+
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•MAP decomposition allows one to predict the scale length as 
a function of radius

COMPARISON WITH STAR COUNTS

• Similar results for the mass scale height vs. stellar scale height

•We understand the stellar disk incredibly well!

– 66 –

Fig. 20.— Comparison between the effective disk scale length determined from star counts
and the dynamically measured scale length from this paper. The prediction from star counts

is obtained by taking the scale length and stellar surface density measurements of MAPs
of BO12 and measuring the scale length of the effective radial profile that is obtained by
combining all MAPs. The errorbar on the radius of the dynamically measured scale length

indicates the range over which it is measured in this paper (cf. Figure 11). The scale length
determined by star counts is in excellent agreement with the dynamically-measured scale

length. BOVY: UPDATE FIGURE WITH PROPER ERRORBAR ON STAR COUNTS
PREDICTION.
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THE MW ROTATION CURVE



ROTATION CURVE FROM STELLAR 
KINEMATICS

• Radial Jeans equation in the mid-plane (Z=0) gives relation between mean 
rotational velocity (    ) and Vc, given measurements of the density profile 
(nu), and the velocity dispersion (radial σU and tangential σV)

• APOGEE: large sample of red giants in the mid-plane of the MW (b=0) 
out to 10 kpc

• We can model the kinematics of these stars using the model above

• Essentially we measure    (R) and use the Jeans equation to correct this to 
Vc

V̄

V̄



ROTATION CURVE FROM STELLAR 
KINEMATICS

• Radial Jeans equation in the mid-plane (Z=0) gives relation between mean 
rotational velocity (    ) and Vc, given measurements of the density profile 
(nu), and the velocity dispersion (radial σU and tangential σV)

• APOGEE: large sample of red giants in the mid-plane of the MW (b=0) 
out to 10 kpc

• We can model the kinematics of these stars using the model above

• Essentially we measure    (R) and use the Jeans equation to correct this to 
Vc

V̄

V̄



ROTATION CURVE FROM STELLAR 
KINEMATICS

Vc2/R=

• Radial Jeans equation in the mid-plane (Z=0) gives relation between mean 
rotational velocity (    ) and Vc, given measurements of the density profile 
(nu), and the velocity dispersion (radial σU and tangential σV)
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out to 10 kpc

• We can model the kinematics of these stars using the model above

• Essentially we measure    (R) and use the Jeans equation to correct this to 
Vc

V̄

V̄



APOGEE YEAR 1 DATA

• Δl =~ 180° at b=0°

• distances up to 10 kpc, but low precision 
photometric distances that we need to 
marginalize over

• Model: Gaussian velocity distribution with 
model dispersion and      from JeansV̄
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streaming motions
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RESULTS

• Vc (R0) = 218 +/- 6 km/s

• 8 < R0 < 9 (kpc)

• -3 < d Vc / d R (R0) < 0.5 (km/s/kpc): approximately flat

• 240 <~ Vφ,⊙ <~ 250 (km/s) or                                          
5.6 < μSgr A* < 6.4 (mas/yr)

• Solar motion =~ 25 km/s                                      
(compared with SBD =~ 12 km/s)

• Systematics < few km/s;                                                      
Vc (R0) < 235 km/s (99% confidence) Bovy et al. (2012)



SIMPLE MODEL
• A simple model for the                                                                                

Milky Way’s potential is                                                                          
included in my galpy code as                
galpy.potential.MWPotential2014

• This model is a Miyamoto-Nagai disk, spherical NFW halo, power-law bulge w/ 
exp. cut that allows for fast orbit integration etc.

• In detail this model agrees with:

• Velocity dispersion in the bulge (Baade’s window)

• Vertical force at the Solar radius and the baryonic surface density (Zhang et 
al. 2013); Vertical force measurements as a function of radius from before

• Terminal velocity curve

• Local mid-plane density (Holmberg & Flynn 2000)

• Rotation curve from APOGEE (Bovy et al. 2012)

• Total mass within 60 kpc from Xue et al. (2008)

Bovy (2015)

https://github.com/jobovy/galpy

https://github.com/jobovy/galpy
https://github.com/jobovy/galpy


NON-AXISYMMETRY



SEARCHING FOR NON-AXISYMMETRY
•Radial distribution of gas and stars driven by non-axisymmetric 
perturbations should leave imprints in the distribution of stellar 
orbits today

•Can search for dynamical effect of perturbations (bar, spirals, ...)

•E.g., velocity DF (Hipparcos), streaming motions (RAVE)

G
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Galactic Center

RAVE; Siebert et al. 
(2010)

Dehnen et al. (1998)



•Wide disk coverage and rotation-curve+DF fits from Bovy et 
al. (2012) allow us to look at deviations from axisymmetric 
rotation

•Main contribution from Sun’s motion wrt Vc, can determine this

GALACTIC DYNAMICS WITH RED 
CLUMP STARS

Bovy et al. (2015)



• After subtracting smooth axisymmetric rotation, can look at 
peculiar velocities

•New interpretation tool: power spectrum

GALACTIC DYNAMICS WITH RED 
CLUMP STARS

Bovy et al. (2015)



• Power spectrum demonstrates that 
fluctuations affect the large scales        
around 3 kpc mostly

• Surprising turn-over on the largest scales

• Can be fit well with standard MW bar,

• Inconsistent with steady spirals, but 
consistent w/ transient, co-rotating spiral 
structure (Grand, Bovy, Kawata,+ in prep.)

• Vsun = 24±1 km s-1

GALACTIC DYNAMICS WITH RED 
CLUMP STARS

Bovy et al. (2015)
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• Complete re-assessment of the structure of the 
stellar disk from SEGUE data:
•  “thick disk”: centrally-concentrated, fits smoothly        

on the “thin disk” component, accounts for ~50%      
of the mass
• Large number of components revealed through 

their elemental abundances with range in scale 
length, scale height, and kinematics
• Smoothness of disk difficult to reconcile with 

large influence of mergers on disk
• Abundance-selected populations → robust 

dynamical inferences:
• MAPs consistent with living in same potential
• MW disk is maximal (Vrot mainly from stars, not 

DM)
• “Dynamical” scale length agrees with star counts 
→ consistency and !MOND

• Future will bring Gaia and better spec. surveys

CONCLUSIONS
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Fig. 20.— Joint PDF for the circular velocity at R0 and the lo-
cal logarithmic slope of the circular velocity curve. The terminal
velocity curve alone constrains Vc to be around 220 km s−1 for a
flat rotation curve and a larger (smaller) Vc for a rising (falling)
rotation curve). The measurements of the vertical mass distribu-
tion (red curves) give the opposite constraint: for Vc to be larger
than 220 km s−1, the rotation curve needs to be falling near R0.
The combination of rotation-curve shape constraints and surface-
density measurements requires Vc = 218± 10 km s−1 and a gently
falling rotation curve d lnVc/d lnR = −0.06± 0.05. This is consis-
tent with the recent direct measurements of these quantities from
stellar kinematics in the plane by APOGEE (Bovy et al. 2012a),
which are shown for comparison.

and d lnVc(R0)/d lnR = −0.09 ± 0.05. We emphasize
that our measurement of Vc in this paper does not rely
on the Sun’s peculiar rotational velocity. For a further
discussion of how a measurement of Vc = 218 km s−1

compares with the literature we refer the reader to Sec-
tion 5.3 of Bovy et al. (2012a); suffice it to say that all
previous measurements are consistent with this measure-
ment. A combination of the data considered in this paper
with the APOGEE results gives Vc = 219±4 km s−1 and
d lnVc(R0)/d lnR = −0.06± 0.04. As the measurements
of this paper and the APOGEE measurements are very
different in the way that they probe the dynamics of the
disk, the fact that these two measurements agree on Vc

strongly argues that Vc ≈ 220 km s−1.
FIG. 21 shows a different representation of all of the

results described in this Section. Shown are the total ro-
tation curve and its decomposition into stellar-disk and
halo contributions. The total and stellar-disk rotation
curves are quite tightly constrained by our dynamical
data. This is mostly due to our precise measurement of
the stellar disk scale length, which was made possible by
our measurements ofKZ,1.1(R) over 4.5 kpc < R < 9 kpc.
The halo contributes significantly less to Vc(R) than the
stellar-disk at all R < 10 kpc. FIG. 21 decidedly shows
that we have for the first time clearly—and through di-
rect dynamical measurement—separated the disk and
halo contributions to the Milky Way’s rotation curve.

Fig. 21.— The Milky Way’s rotation curve at R < 10 kpc and
its decomposition into stellar-disk and halo contributions when
using all of the dynamical data (terminal velocities, KZ,1.1(R),
d lnVc(R0)/d lnR, and Σ∗(R0)). The thick lines are the median
rotation curves and the hatched regions indicate 68% confidence
regions. Both the disk and halo rotation curves are highly con-
strained by the data.

6. DISCUSSION

6.1. First dynamical measurement of the Milky Way’s
scale length

We believe that this paper presents the first dynamical
measurement of the Milky Way disk’s mass profile. Other
measurements of the scale length are either based on star
counts and it is therefore unclear whether they trace all
of the mass in the disk (e.g., Jurić et al. 2008, BO12d), or
they are based on previous dynamical data that leave the
scale length essentially unconstrained (Dehnen & Binney
1998; FIG. 18) unless strong priors are used (e.g., McMil-
lan 2011). It turns out that our best-fit model for the
mass distribution in the inner 10 kpc of the Milky Way is
similar to that of model I in Binney & Tremaine (2008),
which has a maximal disk with a scale length of 2 kpc.
If star counts do trace the underlying mass distribu-

tion, then we can compare our dynamically-inferred scale
length with that measured from star counts. There have
been many measurements over the last few decades of
the radial scale lengths of the thin and thick-disk com-
ponents spanning a wide range between 2 and 5 kpc.
These measurements have greatly improved over the last
few years with the advent of larger-area surveys with
precise multi-band photometry leading to better photo-
metric distances. For example, Jurić et al. (2008) found
from an analysis of SDSS star counts that the thin disk
scale length is 2.6 kpc, which is somewhat larger than the
scale length measured in this paper. This offset may be
due to systematic uncertainties in the photometric dis-
tances used by Jurić et al. (2008). Another, in our view
more likely explanation is that Jurić’s analysis did not
take into account that the radial scale lengths of differ-


