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Square Kilometre Array



  

ASKAP
36 x 12m dishes
36-element multi-pixel feeds
W. Australia (completed 2012)

MeerKAT
64 x 13.5m dishes
Choice of two bands for HI
S. African site (due 2017)

KAT 7
7 x 12m dishes
S. African site
Already producing results (2014)

ASKAP

KAT 7



  

Dish arrays
~96-250 steerable dishes
Interferometer with dense core
Baselines from 20m – 100km+
SKA1-MID, SKA1-SUR (2020)

Low-freq. aperture array
Very cheap, large field of view
Electronic beam forming
SKA1-LOW (2020)

Mid-freq. aperture array
Cheap, large field of view
Electronic beam forming
SKA Phase 2 (2025)

SKA2

SKA1

SKA1



  

K. Vanderlinde

CHIME
Five 20 x 80m cylinders
GPU correlation (1280x recv.)
Site in British Columbia
Pathfinder up and running (2013)

BINGO
~40m dual reflector system
50x autocorrelation receivers
UK-based, site in Uruguay/Brazil

Others
 

FAST (China)
HIRAX (S. Africa)
LOFAR (Netherlands)
TIANLAI (China)

BINGO

CHIME



  

  The future of radio cosmology

Big surveys...
● Large instantaneous field of view (e.g. multiple beams)
● Large collecting area (many dishes/aperture array tiles)
● Many, many low-noise receivers
● Wide instantaneous bandwidth (100's of MHz)
 



  

  The future of radio cosmology

Big surveys...
● Large instantaneous field of view (e.g. multiple beams)
● Large collecting area (many dishes/aperture array tiles)
● Many, many low-noise receivers
● Wide instantaneous bandwidth (100's of MHz)
 

...and big problems
● Need very (read:impossibly) high performance computing:

● High sample rates, narrow channels → very high data rates
● Massive cross-correlation
● On-the-fly calibration (can't store all the data)

● Frequency-dependent beams, gigantic foregrounds, 
polarisation leakage...



  

Cosmology with 
radio surveys



  

  Matter power spectrum

K. Heitmann et al. (2014)

Baryon acoustic oscillations

Non-linear



  

  LSS with radio surveys

Neutral hydrogen is an excellent tracer of large-
scale structure

● HI is ubiquitous in the Universe
● Very narrow emission line at 21cm → get redshifts

Galaxy counts 
+ redshifts 

HI brightness 
fluctuations



  

  Galaxy redshift surveys

BOSS (2014)

 

SKA 1 (~2022)

 

~ 1.5 million galaxies

8,500 sq. deg. (z < 0.7)
 

~ 5 million galaxies

5,000 sq. deg. (z < 0.4)
 

Large FOV, many intermediate baselines → high survey speed



  

  Galaxy redshift surveys

BOSS (2014)

 

SKA 1 (~2022)

 

Euclid (~2025)

 

SKA 2 (~2027)

~ 1.5 million galaxies

8,500 sq. deg. (z < 0.7)
 

~ 5 million galaxies

5,000 sq. deg. (z < 0.4)
 

~ 60 million galaxies

15,000 sq. deg. (0.7 < z < 2.0)
 

~ 1 billion galaxies

30,000 sq. deg. (0.2 < z < 1.7)

Large FOV, many intermediate baselines → high survey speed



  

  Intensity mapping

Why detect individual galaxies?
● Often only want to keep larger scales
● High SNR detection wastes a lot of photons
● Spectroscopic redshifts take a long time

→  Map out emission integrated over many galaxies



  

  Why intensity mapping?

Why detect individual galaxies?
● Often only want to keep larger scales
● High SNR detection wastes a lot of photons
● Spectroscopic redshifts take a long time

→  Map out emission integrated over many galaxies

21cm intensity maps
● Low-resolution still preserves large-scales (c.f. CMB)
● Integrated emission is easier to detect / no thresholding
● Detecting an emission line → get redshifts for free



  

HI density
fluctuations

Noise

Foregrounds

Mean HI signal



  

  Dark Energy

PB et al. (2015)



  

  Modified gravity

SKA1-SUR + Planck
Euclid galaxy surv. + Planck

Combined

Modified gravity
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PB, Ferreira, Patel 
& Santos (2014)



  

Ultra-Large Scales



  

  Survey volumes



  

  Matter power spectrum

K. Heitmann et al. (2014)

“Ultra-large”

Baryon acoustic oscillations

Non-linear



  

  Why ultra-large?

● New physical regime: Newtonian approx. breaks 
down, other effects become important

● Pristine: Unaffected by messy non-linear effects

● Connection to the primordial: Signatures of 
inflation can appear / causality matters

 



  

  Why ultra-large?

● New physical regime: Newtonian approx. breaks 
down, other effects become important

● Pristine: Unaffected by messy non-linear effects

● Connection to the primordial: Signatures of 
inflation can appear / causality matters

● Surprises? 

Guinness World Records



  

  Large-scale corrections

GR corrections become important at ultra-large scales

● Newtonian approximation breaks down

● Non-Newtonian effects are large (lensing, Doppler...)
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GR corrections become important at ultra-large scales

● Newtonian approximation breaks down

● Non-Newtonian effects are large (lensing, Doppler...)

Bonvin & Durrer (2011)

Hall, Bonvin, Challinor (2013)



  

  Large-scale corrections

GR corrections become important at ultra-large scales

● Newtonian approximation breaks down

● Non-Newtonian effects are large (lensing, Doppler...)

Bonvin & Durrer (2011)

Hall, Bonvin, Challinor (2013)

Intensity mapping: luminosity 
distance perturbation cancels



  

  Relativistic effects

GR corrections become important at ultra-large scales

● Newtonian approximation breaks down

● Non-Newtonian effects can be large (lensing, Doppler...)

SKA Cosmology SWG

Red: z ~ 0.5
Blue: z ~ 2.0
 

Solid: Narrow bin
Dashed: Wide bin



  

  Relativistic effects

GR corrections become important at ultra-large scales

● Newtonian approximation breaks down

● Non-Newtonian effects are large (lensing, Doppler...)

Can see causally-disconnected regions at late times

● Distances too large for light to have traversed since the Big Bang

● Consistency test for homogeneity / spatial variations of 
fundamental constants



  

  Relativistic effects

GR corrections become important at ultra-large scales

● Newtonian approximation breaks down

● Non-Newtonian effects are large (lensing, Doppler...)
 

Can see causally-disconnected regions at late times

● Distances too large for light to have traversed since the Big Bang

● Consistency test for homogeneity / spatial variations of 
fundamental constants

 

Scale-dependence of growth of structure

● Modified gravity theories predict scale-dependent growth on 
large scales   (e.g. T. Baker et al., arXiv:1409.8284)



  

  Non-Gaussianity

● Non-Gaussianity enhances clustering at ULS

● SKA should be able to measure σ(fNL) < 1

Camera et al. (2013)

fNL = 10



  

  Existing constraints

● Haven't ULS been measured already?

Freedman & Turner (2003) H. Gil-Marin et al. (2014)

SDSS BOSS DR11
8,500 sq. deg.
0.43 < z < 0.70

6 cubic Gpc

CMB



  

  Survey volumes



  

  Accessing ULS with SKA-IM

15m dishes, 25,000 sq. deg survey



  

  Interferometer vs. dish survey

SKA dish survey much more sensitive to    
BAO at lower redshift / ULS at higher redshift
 

✔ Good for high-precision dark energy measurements

✔ Easier to process images – no missing baselines

✔ Can access extremely large scales → new physics
 

✗  Difficult systematics; correlated noise causes striping

✗  Need very careful calibration



  

Practicalities



  

  Foreground contamination

Total foreground is ~105 times larger than cosmo signal

But: spectrally smooth, so subtraction is possible

Subtracting smooth functions also 
takes away large-scale modes

Alonso, PB, Ferreira, Santos, arXiv:1409.8667



  

  Foreground contamination

Total foreground is ~105 times larger than cosmo signal

But: spectrally smooth, so subtraction is possible

Subtracting smooth functions also 
takes away large-scale modes

Alonso, PB, Ferreira, Santos, arXiv:1409.8667

Use Gibbs sampling to separate 
contamination at large scales?

(c.f. Bull et al., arXiv:1410.2544)



  

  Polarisation leakage

● HI signal is unpolarised, but polarised foregrounds leak into 
total intensity channel of receivers

● Polarised foregrounds not smooth due to Faraday rotation

Cosmological signal

Polarisation leakage

D. Alonso et al. (2014)



  

  Autocorrelation

● Autocorrelation suffers from correlated noise → striping

● Need to scan quickly or have very stable receivers, or 
lose large-scale modes

E. Keihanen et al. (2010)

(Well-known problem 
in CMB experiments)



  

  Ground pickup / spillover

Autocorrelation sensitive to contamination from ground 
(with smooth variation in angle)

M. Irfan (Masters thesis)

C-BASS 
(5 GHz)



  

  Ground pickup / spillover

Autocorrelation sensitive to contamination from ground 
(with smooth variation in angle)

Haslam (408 MHz) C-BASS (5 GHz)

M. Irfan (Masters thesis)



  

  Test surveys

● Currently analysing ~100 hour autocorrelation “test” 
survey on KAT7  (with R. Armstrong, M. Santos, UWC)

● BINGO will also use an autocorrelation strategy

SKA-ZA



  

  Summary

Ultra-large scales with 21cm intensity mapping

No need to detect individual galaxies to access large scales 
→ map the unresolved redshifted HI emission
 

✔ ULS cleanly probe fundamental physics (gravity, inflation)

✔ IM is a very fast way of surveying huge volumes needed

✔ SKA Phase 1 autocorrelation survey makes this possible
 

✗  IM is a new method; relatively untested

✗  Potentially difficult foregrounds/systematics
 

Primer on IM cosmology: PB et al., arXiv:1405.1452



  

[Extra slides]



  

  SKA Specifications

Targeting redshifted neutral hydrogen (HI)



  

  Foreground wedge

A. Liu et al. (2014)

Frequency-dependent beam response couples angular and radial modes 
→ foregrounds leak into small angular scales



  

  Polarisation leakage

● Check leakage with galaxy cross-correlations
(e.g. GBT x WiggleZ, Masui et al. 2012)

F. Villaescusa-Navarro, … PB (2014)



  

  Distance scale forecasts

Some data taken from Font-
Ribera et al. (2014)



  

  Curvature

● Curvature is a strong prediction of inflation

● Eternal inflation would be ruled-out if curvature was 
detected above the |10-4| level

(Kleban & Schillo, Guth & Nomura)

● Fundamental limit of detectability at ~|10-4| too

(Vardanyan et al. 2009, PB & Kamionkowski 2013)

Kleban & Schillo (2012)



  

SKA1-MID
10,000 hours



  

SKA1-MID
10,000 hours

Camera et al. (2014)



  

  Galaxy redshift surveys

Large FOV, many intermediate baselines → high survey speed

Yahya, PB et al. (2014)
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