A New Frontier in the Search for Dark Matter 

  • July 9, 2018, 2:00 pm US/Central
  • Curia II
  • Gordan Krnjaic, Fermilab
The gravitational evidence for the existence of dark matter is overwhelming; observations of galactic rotation curves, the CMB power spectrum, and light element abundances independently suggest that over 80% of all matter is “dark” and beyond the scope of the Standard Model. However, its particle nature is currently unknown, so discovering its potential non-gravitational interactions is a major priority in fundamental physics. In this talk, I will survey the landscape of light dark matter theories and  and introduce an emerging field of fixed-target experiments that are poised to cover hitherto unexplored dark matter candidates with MeV-GeV masses. These new techniques involve direct dark matter production with proton, electron, and *muon*  beams at various facilities including Fermilab, CERN, SLAC, and JLab. Exploring this mass range is essential for fully testing a broad, predictive class of theories in which dark matter abundance arises from dark-visible interactions in thermal equilibrium in the early universe.